in

Anthropogenic impact on the atmospheric microbiome

  • 1.

    IPCC Climate Change 2007: Synthesis Report (eds Core Writing Team, Pachauri, R. K. and Reisinger, A.) (IPCC, 2007).

  • 2.

    Zhang, Y. & Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 43, 812–819 (2009).

  • 3.

    Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

  • 4.

    Bryan, N. C., Christner, B. C., Guzik, T. G., Granger, D. J. & Stewart, M. F. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J. 13, 2789–2799 (2019).

  • 5.

    Fröhlich-Nowoisky, J. et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).

    • Article
    • Google Scholar
  • 6.

    Nogales, B., Lanfranconi, M. P., Piña-Villalonga, J. M. & Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 35, 275–298 (2011).

  • 7.

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

  • 8.

    Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

  • 9.

    Caliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils consistent seasonal trends in the airborne microbiome composition coupled to air masses circulation. Proc. Natl Acad. Sci. USA 115, 12229–12234 (2019).

    • Article
    • Google Scholar
  • 10.

    Els, N. et al. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia 35, 671–701 (2019).

    • Article
    • Google Scholar
  • 11.

    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4, 925–932 (2019).

  • 12.

    Mayol, E. et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 8, 201 (2017).

    • Article
    • Google Scholar
  • 13.

    Maki, T. et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res.-Atmos. 124, 5579–5588 (2019).

    • Article
    • Google Scholar
  • 14.

    Sattler, B., Puxbaum, H. & Psenner, R. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28, 239–242 (2001).

    • Article
    • Google Scholar
  • 15.

    Amato, P. et al. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9, 4383 (2019).

    • Article
    • Google Scholar
  • 16.

    Spracklen, D. V. & Heald, C. L. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmos. Chem. Phys. 14, 9051–9059 (2014).

    • Article
    • Google Scholar
  • 17.

    Vaïtilingom, M. et al. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl Acad. Sci. USA 110, 559–564 (2013).

    • Article
    • Google Scholar
  • 18.

    Global Carbon Budget. Global Carbon Project https://www.globalcarbonproject.org/carbonbudget/ (2018).

  • 19.

    Global Methane Budget. Global Carbon Project https://www.globalcarbonproject.org/methanebudget/ (2016).

  • 20.

    Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).

  • 21.

    Kim, K.-H., Jahan, S. A., Kabir, E. & Brown, R. J. C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80 (2013).

  • 22.

    Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4, 331–338 (1993).

  • 23.

    Laskin, A., Laskin, J. & Nizkorodov, S. A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 115, 4335–4382 (2015).

  • 24.

    Pointing, S. B. & Belnap, J. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers. Conserv. 23, 1659–1667 (2014).

    • Article
    • Google Scholar
  • 25.

    Hayakawa, K. et al. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014. Environ. Pollut. 233, 474–482 (2018).

  • 26.

    Woo, A. C. et al. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmos. Environ. 74, 291–300 (2013).

  • 27.

    Smets, W., Moretti, S., Denys, S. & Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139, 214–221 (2016).


  • Source: Ecology - nature.com

    For cheaper solar cells, thinner really is better

    Testing the waters