in

Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor

  • 1.

    Chippaux, J. P. Snake-bites: appraisal of the global situation. Bull. World Health Organ. 76, 515.9868843 (1998).

    Google Scholar 

  • 2.

    White, J. Bites and stings from venomous animals: a global overview. Ther. Drug Monit. 22, 65–68 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Juckett, G. & Hancox, J. G. Venomous snakebites in the United States: management review and update. Am. Fam. Phys. 65, 1367–1378 (2002).

    Google Scholar 

  • 4.

    Kasturiratne, A. et al. Estimates of disease burden due to land-snake bite in Sri Lankan hospitals. Southeast. Asian. J. Trop. Med. Public Health 36, 733 (2005).

    CAS  Google Scholar 

  • 5.

    Gutiérrez, J. M., Theakston, R. D. G. & Warrell, D. A. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 3, e150 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Kasturiratne, A. et al. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).

    Article  Google Scholar 

  • 7.

    Cruz, L. S., Vargas, R. & Lopes, A. A. Snakebite envenomation and death in the developing world. Ethn. Dis. 19, 42 (2009).

    Google Scholar 

  • 8.

    Warrell, D. Snake bite. Lancet 375, 77–88 (2010).

    PubMed  Article  Google Scholar 

  • 9.

    Chippaux, J. P. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon 57, 586–599 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Gutiérrez, J. M. Snakebite envenoming: a public health perspective. In Public Health-Methodology, Environmental and Systems Issues (ed. Maddock, J.) (InTech, London, 2012).

    Google Scholar 

  • 11.

    Hansson, E., Sasa, M., Mattisson, K., Robles, A. & Gutiérrez, J. M. Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Negl. Trop. Dis. 7, e2009 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).

    ADS  Article  Google Scholar 

  • 13.

    Chippaux, J. P. Incidence and mortality due to snakebite in the Americas. PLoS Negl. Trop. Dis. 11, e0005662-e5739 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Longbottom, J. et al. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet 392, 673–684 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Gutiérrez, J. M. et al. Snakebite envenoming. Nature 3, 17063 (2017).

    Google Scholar 

  • 16.

    Alirol, E., Sharma, S. K., Bawaskar, H. S., Kuch, U. & Chappuis, F. Snake bite in South Asia: a review. PLoS Negl. Trop. Dis. 4, e603 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Yañez-Arenas, C., Díaz-Gamboa, L., Patrón-Rivero, C., López-Reyes, K. & Chiappa-Carrara, X. Estimating geographic patterns of ophidism risk in Ecuador. Neotrop. Biodivers. 4, 55–61 (2018).

    Article  Google Scholar 

  • 18.

    Dehghani, R., Fathi, B., Panjeh Shahi, M. & Jazayeri, M. Ten years of snakebites in Iran. Toxicon 90, 291–298 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Latifi, M. The Snakes of Iran (Department of Environment, Tehran, 2000).

    Google Scholar 

  • 20.

    Monzavi, S. M., Dadpour, B. & Afshari, R. Snakebite management in Iran: devising a protocol. J. Res. Med. Sci. 19, 153–163 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Rastegar-Pouyani, E. et al. A re-evaluation of taxonomic status of Montivipera (Squamata: Viperidae) from Iran using a DNA barcoding approach. Biochem. Syst. Ecol. 57, 350–356 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Oraie, H. et al. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra 54, 233–238 (2018).

    Google Scholar 

  • 23.

    Moradi, N., Rastegra-Pouyani, N. & Rastegra-Pouyani, E. Geographic variation in the morphology of Macrovipera lebetina (Linnaeus, 1758) (Ophidia: Viperidae) in Iran. Acta Herpetol. 9, 187–202 (2014).

  • 24.

    Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Toodeh-Dehghan, F. & Rajabizadeh, M. Molecular systematics of the genus Pseudocerastes (Ophidia: Viperidae) based on the mitochondrial cytochrome b gene. Turk. J. Zool. 38, 575–581 (2014).

    CAS  Article  Google Scholar 

  • 25.

    Behrooz, R. et al. Habitat modeling and conservation of the endemic Latifi’s viper (Montivipera latifii) in Lar National Park Northern Iran. Herpetol. Conserv. Biol. 10, 572–582 (2015).

    Google Scholar 

  • 26.

    Khani, Sh., Kami, H. G. & Rajabizadeh, M. Geographic variation of Gloydius halys caucasicus (Serpentes: Viperidae) in Iran. Zool. Middle East. 63, 303–310 (2017).

    Article  Google Scholar 

  • 27.

    Fathinia, B., Rastegar-Pouyani, N. & Rastegar-Pouyani, E. Molecular phylogeny and historical biogeography of genera Eristicophis and Pseudocerastes (Ophidia, Viperidae). Zool. Scr. 47, 673–685 (2018).

    Article  Google Scholar 

  • 28.

    Rastegar-Pouyani, E., Oraie, H., Khosravani, A. & Akbari, A. Phylogenetic position of Iranian pitvipers (Viperidae, Crotalinae, Gloydius) inferred from mitochondrial cytochrome b sequences. Trop. Zool. 31, 55–67 (2018).

    Article  Google Scholar 

  • 29.

    Eslamian, L. et al. Snake bite in Northwest Iran: a retrospective study. J. Anal. Res. Clin. Med. 4, 133–138 (2016).

    Article  Google Scholar 

  • 30.

    Dehghani, R., Rabani, D., Panjeh-Shahi, M., Jazayeri, M. & Sabahi Bidgoli, M. Incidence of snake bite in Kashan, IR Iran during an eight-year period (2004–2011). Arch. Trauma Res. 1, 67–71 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Farzaneh, E. et al. Epidemiological study of snakebites in Ardabil Province (Iran). Electron. Phys. 9, 3986–3990 (2017).

    Article  Google Scholar 

  • 32.

    Ebrahimi, V., Hamdami, E., Khademian, M. H., Moemenbellah-Fard, M. D. & Vazirianzadeh, B. Epidemiologic prediction of snake bites in tropical south Iran: using seasonal time series methods. Clin. Epidemiol. Glob. Health 6, 208–215 (2018).

    Article  Google Scholar 

  • 33.

    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  • 34.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 35.

    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Milanesi, P., Holderegger, R., Caniglia, R., Fabbri, E. & Randi, E. Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl. Ecol. 17, 61–71 (2015).

    Article  Google Scholar 

  • 37.

    Moradi, S., Sheykhi Ilanloo, S., Kafash, A. & Yousefi, Y. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecol. Indic. 97, 159–164 (2019).

    Article  Google Scholar 

  • 38.

    Farrell, A. et al. Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data. Ecol. Evol. 9, 5938–5949 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Kalle, R., Ramesh, T., Qureshi, Q. & Sankar, K. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS ONE 8, e79295 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Bradie, J. & Leung, B. A. quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).

    Article  Google Scholar 

  • 41.

    Ashoori, A. et al. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 85, 373–381 (2018).

    Article  Google Scholar 

  • 42.

    Sutton, L. J. & Puschendorf, R. Climatic niche of the Saker Falcon Falco cherrug: predicted new areas to direct population surveys in Central Asia. Ibis 162, 27–41 (2020).

    Article  Google Scholar 

  • 43.

    Andrade-Díaz, M. S. et al. Expansion of the agricultural frontier in the largest South American Dry Forest: identifying priority conservation areas for snakes before everything is lost. PLoS ONE 14, e0221901 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Article  Google Scholar 

  • 45.

    Qin, A. et al. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).

    Article  Google Scholar 

  • 46.

    Wang, R. et al. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 13, e0192153 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Kafash, A. et al. Climate change produces winners and losers: differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 16, e00471 (2018).

    Article  Google Scholar 

  • 48.

    Schivo, F., Bauni, V., Krug, P. & Quintana, R. D. Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Appl Geogr. 103, 70–89 (2019).

    Article  Google Scholar 

  • 49.

    Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., Kusza, S. & Pilliod, D. S. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Glob. Ecol. Conserv. 19, e00637 (2019).

    Article  Google Scholar 

  • 50.

    Yousefi, M., Jouladeh-Rodbar, A. & Kafash, A. Using endemic freshwater fishes as proxies of their ecosystems to identify high priority rivers for conservation under climate change. Ecol. Indic. 112, 106137 (2020).

    Article  Google Scholar 

  • 51.

    Segura, S., Coppens d’Eeckenbrugge, G., López, L., Grum, M. & Guarino, L. Mapping the potential distribution of five species of Passiflora in Andean countries. Genet. Resour. Crop Evol. 50, 555–566 (2003).

    Article  Google Scholar 

  • 52.

    Rebelo, H. & Jones, G. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47, 410–420 (2010).

    Article  Google Scholar 

  • 53.

    Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).

    Article  Google Scholar 

  • 55.

    Pauli, B. P. et al. Human habitat selection: using tools from wildlife ecology to predict recreation in natural landscapes. Nat. Areas J. 39, 142–149 (2019).

    Article  Google Scholar 

  • 56.

    Yañez-Arenas, C., Peterson, A. T., Mokondoko, P., Rojas-Soto, O. & Martínez-Meyer, E. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican State of Veracruz. PLoS ONE 9, e100957 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    Yañez-Arenas, C., Peterson, A. T., Rodriguez-Medina, K. & Barve, N. Mapping current and future potential snakebite risk in the new world. Clim. Change 134, 697–711 (2016).

    ADS  Article  Google Scholar 

  • 58.

    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195 (2019).

    ADS  Article  Google Scholar 

  • 59.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed  Article  Google Scholar 

  • 60.

    Yousefi, M. et al. Climate change is a major problem for biodiversity conservation: a systematic review of recent studies in Iran. Contemp. Probl. Ecol. 12, 394–403 (2019).

    Article  Google Scholar 

  • 61.

    Hannah, L. Climate Change Biology 2nd edn. (Academic Press, Cambridge, 2015).

    Google Scholar 

  • 62.

    Yousefi, M. & Kafash, A. Venomous snakes of Iran under climate change. In SCCS Europe—4th Hungarian Student Conference on Conservation Science, 4–8 September (2018).

  • 63.

    Maritz, B. et al. Identifying global priorities for the conservation of vipers. Biol. Conserv. 204, 94–102 (2016).

    Article  Google Scholar 

  • 64.

    Sharma, S. K. et al. Effectiveness of rapid transport of victims and community health education on snake bite fatalities in rural Nepal. Am. J. Trop. Med. Hyg. 89, 145–150 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    WHO. Guidelines for the Management of Snakebites (World Health Organization, Geneva, 2016).

    Google Scholar 

  • 66.

    Trogridou, A. Prevention is Better Than Cure: Snakebite Education in India (Episthmes Agogis, 2018).

  • 67.

    Chappuis, F., Sharma, S. K., Jha, N., Loutan, L. & Bovier, P. A. Protection against snake bites by sleeping under a bed net in southeastern Nepal. Am. J. Trop. Med. Hyg. 77, 197–199 (2007).

    PubMed  Article  Google Scholar 

  • 68.

    Khatchikian, C., Sangermano, F., Kendell, D. & Livdahl, T. Evaluation of species distribution model algorithms for fine-scale container-breeding mosquito risk prediction. Med. Vet. Entomol. 25, 268–275 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Escobar, L. E. et al. Ecology and geography of transmission of two bat-borne rabies lineages in Chile. PLoS Negl. Trop. Dis. 7, e2577 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Du, Z. et al. Ecological niche modeling for predicting the potential risk areas of severe fever with thrombocytopenia syndrome. Int. J. Infect. Dis. 26, 1–8 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Peterson, T. Mapping Disease Transmission Risk: Enriching Models Using Biogeography and Ecology (Johns Hopkins University Press, Baltimore, 2014).

    Google Scholar 

  • 72.

    Escobar, L. E. & Craft, M. E. Advances and limitations of disease biogeography using ecological niche modeling. Front. Microbiol. 7, 1174 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Escobar, L. E. et al. Ecological approaches in veterinary epidemiology: mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Vet. Res. 46, 92 (2015).

    MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Nyakarahuka, L. et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda.PLoS Curr. (2017). Edition 1 2017.https://doi.org/10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.

  • 75.

    Soucy, J. P. R. et al. High-resolution ecological niche modeling of Ixodes scapularis ticks based on passive surveillance data at the Northern Frontier of Lyme disease emergence in North America. Vector Borne Zoonotic Dis. 18, 235–242 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Little, E. A. H. et al. Predicting spatiotemporal patterns of Lyme disease incidence from passively collected surveillance data for Borrelia burgdorferi sensu lato-infected Ixodes scapularis ticks. Ticks. Ticks Tick Borne Dis. 10, 970–980 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Johnson, E. E., Escobar, L. E. & Zambrana-Torrelio, C. An ecological framework for modeling the geography of disease transmission. Trends Ecol. Evol. 34, 655–668 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Yousefi, M. et al. Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PLoS ONE 10, e0138087 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 79.

    Rajabizadeh, M. Snakes of Iran (IranShenasi Publishing, Tehran, 2017).

    Google Scholar 

  • 80.

    IUCN. The IUCN Red List of Threatened Species. Version 2019.3. https://www.iucnredlist.org. Accessed 10 March 2020 (2019).

  • 81.

    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).

    PubMed  Article  Google Scholar 

  • 82.

    Terribile, L. C. et al. Global richness patterns of venomous snakes reveal contrasting influences of ecology and history in two different clades. Oecologia 159, 617 (2009).

    ADS  PubMed  Article  Google Scholar 

  • 83.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 84.

    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 86.

    Broxton, P. D., Zeng, X., Schefic, W. & Troch, P. A. A MODIS-Based global 1-km maximum green vegetation fraction dataset. J. Appl. Meteorol. Clim. 53, 1996–2004 (2014).

    ADS  Article  Google Scholar 

  • 87.

    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R Package (2015).

  • 88.

    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. https://srtm.csi.cgiar.org. Accessed on 15 Apr 2015 (2008).

  • 89.

    Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  • 90.

    Naimi, B. Uncertainty Analysis for Species Distribution Models. R Package Version 1.1-15 (2015).

  • 91.

    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, 2017).

    Google Scholar 

  • 92.

    Ridgeway, G. The state of boosting. Comput. Stat. 31, 172–181 (1999).

    Google Scholar 

  • 93.

    Hastie, T. J. & Tibshirani, R. Generalized Additive Models (Chapman and Hall, London, 1990).

    Google Scholar 

  • 94.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article  Google Scholar 

  • 95.

    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman and Hall, London, 1989).

    Google Scholar 

  • 96.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Article  Google Scholar 

  • 97.

    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.3-7 (2016).

  • 98.

    Freeman, E. A. & Moisen, G. PresenceAbsence: an r package for presence absence model analysis. J. Stat. Softw. 23, 1–31 (2008).

    Article  Google Scholar 

  • 99.

    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Article  Google Scholar 

  • 100.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence–absence models. Environ. Conserv. 24, 38–49 (1997).

    Article  Google Scholar 

  • 101.

    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).

    Article  Google Scholar 

  • 102.

    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate