in

Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae

  • 1.

    Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, Amsterdam, 2008).

    Google Scholar 

  • 3.

    van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 4.

    Lekberg, Y., Hammer, E. C. & Olsson, P. A. Plants as resource islands and storage units—adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 6, 291–297 (2007).

    Article  Google Scholar 

  • 6.

    Newsham, K. K., Fitter, A. H. & Watkinson, A. R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83, 991–1000 (1995).

    Article  Google Scholar 

  • 7.

    Vigo, C., Norman, J. R. & Hooker, J. E. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49, 509–514 (2000).

    Article  Google Scholar 

  • 8.

    Aroca, R., Porcel, R. & Ruiz-Lozano, J. M. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytol. 173(4), 808–816 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front Plant Sci. 5, ARTN 562. https://doi.org/10.3389/fpls.2014.00562 (2014).

  • 10.

    Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25(1), 13–24 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Pfeffer, P. E., Douds, D. D., Becard, G. & Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120(2), 587–598 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124(3), 949–958 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Horton, T. R. Mycorrhizal networks (Springer, Dordrecht, 2015).

    Google Scholar 

  • 14.

    Walder, F. & van der Heijden, M. G. A. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1(11), 7 (2015).

    Article  CAS  Google Scholar 

  • 15.

    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706), 69–72 (1998).

    ADS  Article  CAS  Google Scholar 

  • 16.

    Wilson, G. W. T., Hartnett, D. C. & Rice, C. W. Mycorrhizal-mediated phosphorus transfer between the tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct. Ecol. 20, 427–435 (2006).

    Article  Google Scholar 

  • 17.

    Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25(8), 468–478 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Walder, F. et al. Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159, 789–797 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Weremijewicz, J., Sternberg, L. & Janos, D. P. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol. 212(2), 461–471 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Řezáčová, V. et al. Little cross-feeding of the mycorrhizal networks shared between C3Panicum bisulcatum and C4Panicum maximum under different temperature regimes. Front. Plant Sci. 9, 16. https://doi.org/10.3389/fpls.2018.00449 (2018).

    Article  Google Scholar 

  • 21.

    Deslippe, J. R. & Simard, S. W. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra. New Phytol. 192, 689–698 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Bever, J. D., Richardson, S. C., Lawrence, B. M., Holmes, J. & Watson, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12(1), 13–21 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Lendenmann, M. et al. Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21(8), 689–702 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044), 880–882 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Rillig, M. C. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 7, 740–754 (2004).

    Article  Google Scholar 

  • 26.

    Verbruggen, E. & Kiers, E. T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl. 3(5–6), 547–560 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525(7567), 100–103 (2015).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 28.

    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24(9), 497–504 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18(5), 1725–1737 (2012).

    ADS  Article  Google Scholar 

  • 30.

    Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12(5), ARTN e1001850. https://doi.org/10.1371/journal.pbio.1001850 (2014).

  • 31.

    Mitchell, C. E. et al. Biotic interactions and plant invasions. Ecol. Lett. 9(6), 726–740 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15(1), 22–40 (2009).

    Article  Google Scholar 

  • 33.

    van der Putten, W. H. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol. Evol. 25(9), 512–519 (2010).

    PubMed  Article  Google Scholar 

  • 34.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17(4), 164–170 (2002).

    Article  Google Scholar 

  • 35.

    Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96(3), 762–774 (2015).

    PubMed  Article  Google Scholar 

  • 36.

    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a generaltheory of invasibility. J. Ecol. 88, 528–534 (2000).

    Article  Google Scholar 

  • 37.

    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427(6976), 731–733 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 38.

    Rudgers, J. A. & Orr, S. Non-native grass alters growth of native tree species via leaf and soil microbes. J. Ecol 97(2), 247–255 (2009).

    Article  Google Scholar 

  • 39.

    Sun, Z. K. & He, W. M. Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE 5(11), 5. https://doi.org/10.1371/journal.pone.0015418 (2010).

    CAS  Article  Google Scholar 

  • 40.

    Dickie, I. A. et al. The emerging science of linked plant-fungal invasions. New Phytol. 215(4), 1314–1332 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Cronk, Q. C. B. & Fuller, J. R. Plant Invaders: The Threat to Natural Ecosystems (Earthscan Publications, London, 2001).

    Google Scholar 

  • 42.

    Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—the role of mutualisms. Biol. Rev. 75(1), 65–93 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Pringle, A. et al. Mycorrhizal symbioses and plant invasions. Ann Rev. Ecol. Evol. Syst. 40, 699–715 (2009).

    Article  Google Scholar 

  • 44.

    Wilson, G. W. T., Hickman, K. R. & Williamson, M. M. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza 22, 327–336 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Nunez, M. A. & Dickie, I. A. Invasive belowground mutualists of woody plants. Biol. Invasions 16, 645–661 (2014).

    Article  Google Scholar 

  • 46.

    Bunn, R. A., Ramsey, P. W. & Lekberg, Y. Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. J. Ecol. 103, 1547–1556 (2015).

    CAS  Article  Google Scholar 

  • 47.

    Gucwa-Przepiora, E., Chmura, D. & Sokolowska, K. AM and DSE colonization of invasive plants in urban habitat: a study of Upper Silesia (southern Poland). J. Plant Res. 129, 603–614 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Waller, L. P., Callaway, R. M., Klironomos, J. N., Ortega, Y. K. & Maron, J. L. Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant. J. Ecol. 104, 1599–1607 (2016).

    Article  Google Scholar 

  • 49.

    Menzel, A. et al. Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98, 92–102 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Broadbent, A. A. D., Stevens, C. J., Ostle, N. J. & Orwin, K. H. Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release. Oecologia 186, 611–620 (2018).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Vogelsang, K. M. & Bever, J. D. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90, 399–407 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Pakpour, S. & Klironomos, J. The invasive plant, Brassica nigra, degrades local mycorrhizas across a wide geographical landscape. R. Soc. Open Sci. 2, 4 (2015).

    Article  Google Scholar 

  • 54.

    Shah, M. A., Reshi, Z. A. & Khasa, D. P. Arbuscular mycorrhizas: Drivers or passengers of alien plant invasion. Bot. Rev. 75, 397–417 (2009).

    Article  Google Scholar 

  • 55.

    De Souza, T. A. F., Rodriguez-Echeverria, S., de Andrade, L. A. & Freitas, H. Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil?. Acta Bot. Bras. 30, 93–101 (2016).

    Article  Google Scholar 

  • 56.

    Awaydul, A. et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29, 29–38 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Štajerová, K., Šmilauerová, M. & Šmilauer, P. Arbuscular mycorrhizal symbiosis of herbaceous invasive neophytes in the Czech Republic. Preslia 81, 341–355 (2009).

    Google Scholar 

  • 58.

    Hempel, S. et al. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94, 1389–1399 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Callaway, R. M., Newingham, B., Zabinski, C. A. & Mahall, B. E. Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours. Ecol. Lett. 4, 429–433 (2001).

    Article  Google Scholar 

  • 60.

    Workman, R. E. & Cruzan, M. B. Common mycelial networks impact competition in an invasive grass. Am. J. Bot. 103, 1041–1049 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Zhang, Q. et al. Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopathy J. 20, 71–77 (2007).

    ADS  CAS  Google Scholar 

  • 62.

    Callaway, R. M. et al. Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Sarma, K. K. V. Allelopathic potential of Echinops echinatus and Solanum surratense on seed germination of Argemone mexicana. Trop. Ecol. 15, 156–157 (1974).

    Google Scholar 

  • 64.

    Smith, M. D., Hartnett, D. C. & Wilson, G. W. T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia 121, 574–582 (1999).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Liao, H. X. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).

    CAS  Article  Google Scholar 

  • 67.

    Řezáčová, V. et al. Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4Panicum grasses. Plant Soil 425, 441–456 (2018).

    Article  CAS  Google Scholar 

  • 68.

    Newman, E. I. A method of estimating total length of root in a sample. J. Appl. Ecol. 3, 139–145 (1966).

    Article  Google Scholar 

  • 69.

    Bukovská, P., Gryndler, M., Gryndlerová, H., Püschel, D. & Jansa, J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 7, 711 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Hewitt, E. J. Sand and water culture methods used in the study of plant nutrition. CAB Tech. Commun. 22, 431–432 (1966).

    Google Scholar 

  • 71.

    Řezáčová, V. et al. Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—a case of dysfunctional symbiosis. Pedobiologia 62, 48–55 (2017).

    Article  Google Scholar 

  • 72.

    Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).

    ADS  CAS  Article  Google Scholar 

  • 73.

    McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).

    Article  Google Scholar 

  • 74.

    Koske, R. E. & Gemma, J. N. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 92, 486–505 (1989).

    Article  Google Scholar 

  • 75.

    Gryndler, M. et al. Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza 23, 341–348 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities-marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).

    CAS  Article  Google Scholar 

  • 77.

    von Felten, A., Défago, G. & Maurhofer, M. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J. Microbiol. Methods 81, 108–115 (2010).

    Article  CAS  Google Scholar 

  • 78.

    Janoušková, M., Püschel, D., Hujslová, M., Slavíková, R. & Jansa, J. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?. Mycorrhiza 25, 205–214 (2015).

    PubMed  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Massive, swift federal investment needed to address climate change, panelists say

    Cracking the secrets of an emerging branch of physics