in

Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios

  • 1.

    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–13 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Bargagli, R. Antarctic Ecosystems Environmental Contamination, Climate Change, and Human Impact. (2005).

  • 3.

    Turner, J. et al. Antarctic Climate Change and the Environment – A contribution to the international polar year 2007-2008. (Scientific Committee on Antarctic Research (2009).

  • 4.

    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Peck, L. S., Convey, P. & Barnes, D. K. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol. Rev. Camb. Philos. Soc. 81, 75–109 (2006).

    PubMed  Google Scholar 

  • 6.

    Burton-Johnson, A., Black, M., Fretwell, P. T. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosph. 10, 1665–1677 (2016).

    Google Scholar 

  • 7.

    Convey, P. Antarctic Ecoystems. in Encyclopedia of Biodiversity (ed. Levin, S.) 22, 735–740 (Academic Press (2013).

  • 8.

    Chown, S. L. & Convey, P. Antarctic Entomology. Annu. Rev. Entomol. 61, 119–137 (2016).

    CAS  PubMed  Google Scholar 

  • 9.

    Norris, R. D. et al. Marine Ecosystem Responses to Cenozoic Global Change. 2311, 2306–2311 (2013).

    Google Scholar 

  • 10.

    Convey, P. et al. The spatial structure of antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).

    Google Scholar 

  • 11.

    Convey, P. et al. Ice – Bound Antarctica: Biotic consequences of the shift from a temperate to a polar Climate. in Mountains, Climate and Biodiversity (eds. Hoorn, C., Perrigo, A. & Antonelli, A.) 355–374 (John Wiley & Sons Ltd (2018).

  • 12.

    Allegrucci, G., Carchini, G., Convey, P. & Sbordoni, V. Evolutionary geographic relationships among orthocladine chironomid midges from maritime Antarctic and sub-Antarctic islands. Biol. J. Linn. Soc. 106, 258–274 (2012).

    Google Scholar 

  • 13.

    Chown, S. L. & Convey, P. Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 2307–2331 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Helmuth, B., Kingsolver, J. & Carrington, E. Biophysics, physiological ecology, and climate change: does mechanism matter? Annu. Rev. Physiol. 67, 177–201 (2005).

    CAS  PubMed  Google Scholar 

  • 15.

    Wang, R. et al. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS One 1–21, https://doi.org/10.1371/journal.pone.0192153 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Modell. 222, 1343–1346 (2011).

    Google Scholar 

  • 17.

    Boyce, M., Vernier, P., Nielsen, S. & Schmiegelow, F. Evaluating resource selection functions. Ecol. Modell. 157, 281–300 (2002).

    Google Scholar 

  • 18.

    Acevedo, P., Jiménez-Valverde, A., Aragón, P. & Niamir, A. New developments in the study of species distribution. in Current Trends in Wildlife Research. Wildlife Research Monographs (eds. Mateo, R., Arroyo, B. & Garcia, J.) (Springer, Cham (2016).

  • 19.

    Cook, A., Poncet, S., Cooper, A. & Herbert, D. Christie Glacier retreat on South Georgia and implications for the spread of rats. Antarct. Sci. 22, 255–263 (2010).

    ADS  Google Scholar 

  • 20.

    Nędzarek, A. & Pociecha, A. Limnological characterization of freshwater systems of the Thomas Point Oasis (Admiralty Bay, King George Island, West Antarctica). Polar Sci. 4, 457–467 (2010).

    ADS  Google Scholar 

  • 21.

    Quayle, W. C. et al. Ecological responses of maritime antarctic lakes to regional climate change. Antarct. Res. Ser. 76, 335–347 (2003).

    Google Scholar 

  • 22.

    Sinclair, B. J., Vernon, P., Klok, C. J. & Chown, S. L. Insects at low temperatures: An ecological perspective. Trends Ecol. Evol. 18, 257–262 (2003).

    Google Scholar 

  • 23.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Wei, J., Zhao, Q., Zhao, W. & Zhang, H. Predicting the potential distributions of the invasive cycad scale Aulacaspis yasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the implications for management. PeerJ 6, e4832 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2093–106 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Chown, S. L. & Gaston, K. J. Macrophysiology – progress and prospects. Funct. Ecol. 30, 330–344 (2016).

    Google Scholar 

  • 27.

    Gañán Mora, M., Contador, T. A. & Kennedy, J. H. La vida en los extremos: el uso de SIG para estudiar la distribución dela mosca antártica alada, Parochlus steinenii (Diptera: Chironomidae), en las Islas Shetland del Sur (Antártica marítima). Análisis Espac. y Represent. geográfica innovación y Apl. 1599–1608 (2015).

  • 28.

    Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers. Distrib. 22, 836–840 (2016).

    Google Scholar 

  • 30.

    Hahn, S. & Reinhardt, K. Habitat preference and reproductive traits in the Antarctic midge Parochlus steinenii (Diptera: Chironomidae). Antarct. Sci. 18, 175 (2006).

    ADS  Google Scholar 

  • 31.

    Casanova-Katny, M. A. & Cavieres, L. A. Antarctic moss carpets facilitate growth of Deschampsia antarctica but not its survival. Polar Biol. 35, 1869–1878 (2012).

    Google Scholar 

  • 32.

    Volonterio, O., P de Leon, R., Convey, P. & Krzeminska, E. First record of Trichoceridae (Diptera) in the maritime Antarctic. Polar Biol. 36, 1125–1131 (2013).

    Google Scholar 

  • 33.

    Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).

    Google Scholar 

  • 34.

    Vaughan, D. G. Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arctic, Antarct. Alp. Res. 38, 147–152 (2010).

    Google Scholar 

  • 35.

    Wirth, W. & Gressitt, J. L. Diptera: Chironomidae (midges). Antarct. Res. Ser. 10, 197–203 (1967).

    Google Scholar 

  • 36.

    Toro, M. et al. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol. 30, 635–649 (2006).

    Google Scholar 

  • 37.

    Rico, E. & Quesada, A. Distribution and ecology of chironomids (Diptera, Chironomidae) on Byers Peninsula, Maritime Antarctica. Antarct. Sci. 25, 288–291 (2013).

    ADS  Google Scholar 

  • 38.

    Baddeley, A. Analysing spatial point patterns in R. Work. Notes 12, 1–199 (2008).

    Google Scholar 

  • 39.

    Hammer, O., Harper, D. & Ryan, P. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • 40.

    Baddeley, A. & Turner, R. Modelling spatial point patterns in R. in Case Studies in Spatial Point Pattern Modelling (eds. Baddeley, A., Gregory, P., Mateu, M., Stoica, J. & Stoyan, D.) 310 (Springer. https://doi.org/10.1007/0-387-31144-0_2 (2006).

  • 41.

    Baddeley, A. Handling shapefiles in the spatstat package v1.36-0. CRAN Vignettes 1–9 (2014).

  • 42.

    Baddeley, A. Practical maximum pseudolikelihood for spatial point patterns. Aust. New Zeal. J. Stat. 42, 283–322 (2000).

    MathSciNet  MATH  Google Scholar 

  • 43.

    Dallas, H. F. & Rivers-Moore, N. Critical Thermal Maxima of aquatic macroinvertebrates: towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2011).

    Google Scholar 

  • 44.

    Ernst, M. R. et al. Stream Critical Thermal Maxima of nymphs of three Plecoptera species from an Ozark Foothill Stream. Freshw. Invertebr. Biol. 3, 80–85 (1984).

    Google Scholar 

  • 45.

    Klok, C. & Chown, S. L. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae). J. Insect Physiol. 47, 95–109 (2001).

    CAS  PubMed  Google Scholar 

  • 46.

    Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).

    Google Scholar 

  • 47.

    Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science (80-.). 361, 920–923 (2018).

    ADS  CAS  Google Scholar 

  • 48.

    Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 49.

    Hijmans, R., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R package version 1.0. Retrieved from https://CRA (2015).

  • 50.

    Leihy, R., Duffy, G., Nortje, E. & Chown, S. Data descriptor: High resolution temperature data for ecological research and management on the Southern Ocean Islands. Sci. Data 5, 1–13 (2018).

    Google Scholar 

  • 51.

    Fotheringham, A., Charlton, M. & Brunsdon, C. Two techniques for exploring non-stationarity in geographical data. Geogr. Syst. 4, 59–82 (1997).

    Google Scholar 

  • 52.

    Morales-Salinas, L. et al. A simple method for estimating suitable territory for bioenergy species in Chile. Cienc. e Investig. Agrar. 42, 227–242 (2015).

    Google Scholar 

  • 53.

    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography (Cop.). 1, 607–611 (2010).

    Google Scholar 

  • 54.

    Phillips, S., Anderson, R. & Schapire, R. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).

    Google Scholar 

  • 55.

    Wei, J., Zhao, Q., Zhao, W. & Zhang, H. Predicting the potential distributions of the invasive cycad scale Aulacaspis yasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the implications for management. PeerJ https://doi.org/10.7717/peerj.4832 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Buermann, W. et al. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. 1160–1176. https://doi.org/10.1111/j.1365-2699.2007.01858.x (2008).

    Google Scholar 

  • 57.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  • 58.

    Hernandez, P., Graham, C., Master, L. & Albert, D. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.). 5, 773–785 (2006).

    Google Scholar 

  • 59.

    Heikkinen, R. K., Marmion, M. & Luoto, M. Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography (Cop.). 35, 276–288 (2012).

    Google Scholar 

  • 60.

    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Raes, N. & Ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography (Cop.). 30, 727–736 (2007).

    Google Scholar 

  • 62.

    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. 347–357. https://doi.org/10.1111/j.1466-822x.2005.00162.x (2005).

    Google Scholar 

  • 63.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 64.

    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 9, 142–152 (2006).

    Google Scholar 

  • 65.

    Pearson, R., Raxworthy, C., Nakamura, M. & Peterson, T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).

    Google Scholar 

  • 66.

    Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. 1–18. https://doi.org/10.1111/jbi.12894 (2016).

    Google Scholar 

  • 67.

    Convey, P. & Block, W. Antarctic Diptera: Ecology. physiology, and distribution. Eur. J. Entomol. 93, 1–13 (1996).

    Google Scholar 

  • 68.

    Gibson, J. A. E. & Zale, R. Holocene development of the fauna of Lake Boeckella, northern Antarctic Peninsula. The Holocene 5, 625–634 (2006).

    ADS  Google Scholar 

  • 69.

    Gibson, Ja. E., Cromer, L., Agius, J. T., Mcinnes, S. J. & Marley, N. J. Tardigrade eggs and exuviae in Antarctic lake sediments: insights into Holocene dynamics and origins of the fauna. J. Limnol. 66, 65–71 (2007).

    Google Scholar 

  • 70.

    Hodgson, D. A., Convey, P., Hodgson, D. A. & Convey, P. A 7000-year Record of Oribatid Mite Communities on a Maritime-Antarctic Island: Responses to Climate Change A 7000-year Record of Oribatid Mite Communities on a Maritime-Antarctic Island: Responses to Climate Change. 37, 239–245 (2005).

    Google Scholar 

  • 71.

    Lakovic, M., Poethke, H. & Hovestadt, T. Dispersal Timing: Emigration of Insects Living in Patchy Environments. PLoS One 10, 1–15 (2015).

    Google Scholar 

  • 72.

    Frenot, Y. et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol. Rev. 80, 45–72 (2005).

    PubMed  Google Scholar 

  • 73.

    Hughes, K. A. et al. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: A preliminary risk assessment. J. Environ. Manage. 232, 73–89 (2019).

    PubMed  Google Scholar 

  • 74.

    Pertierra, L., Hughes, K., Vega, G. & Olalla-Tárraga, M. A. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLoS One 12, e0168280, https://doi.org/10.1371/journal.pone.01 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Shimada, K., Ohyama, Y. & Pan, C. Cold-hardiness of the Antarctic winged midge Parochlus steinenii during the active season at King George Island. Polar Biol. 11, 311–314 (1991).

    Google Scholar 

  • 77.

    Rauschert, M. Beobachtungen an der Chironomide Parochlus steineni auf der Insel King George (Sudshetlandinseln, Antarktis). Dutsch.ent.Z.N.F 32, 183–188 (1985).

    Google Scholar 

  • 78.

    Quayle, W. C. et al. Extreme Responses to Climate Change in Antarctic Lakes Published by: American Association for the Advancement of Science Linked references are available on JSTOR for this article: Extreme Responses to Climate Change in Antarctic Lakes. 295, 645 (2002).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Study: Reflecting sunlight to cool the planet will cause other global changes

    Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology