Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e622897 (2013).
Dehnhard, N. et al. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment?. J. Anim. Ecol. 89, 104–119 (2020).
Longhurst, A. R. & Pauly, D. Ecology of Tropical Oceans (Academic Press, New York, 1987).
Weimerskirch, H. Are seabirds foraging for unpredictable resources?. Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).
McDuie, F., Weeks, S. J. & Congdon, B. C. Oceanographic drivers of near-colony seabird foraging site use in tropical marine systems. Mar. Ecol. Prog. Ser. 589, 209–225 (2018).
Grémillet, D. et al. Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s shearwaters from the largest seabird colony in the Mediterranean. Mar. Biol. 161, 2669–2680 (2014).
Weimerskirch, H. et al. At-sea movements of wedge-tailed shearwaters during and outside the breeding season from four colonies in New Caledonia. Mar. Ecol. Prog. Ser. 663, 225–238 (2020).
de Grissac, S., Börger, L., Guitteaud, A. & Weimerskirch, H. Contrasting movement strategies among juvenile albatrosses and petrels. Sci. Rep. 6, 26103 (2016).
Mott, R. & Clarke, R. H. Systematic review of geographic biases in the collection of at-sea distribution data for seabirds. Emu 118, 235–246 (2018).
Cherel, Y. et al. Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar. Ecol. Prog. Ser. 366, 281–291 (2008).
France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).
Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).
Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotope ecology. Front. Ecol. Environ. 5, 429–436 (2007).
Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–10012 (2004).
Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl. Acad. Sci. USA 104, 10075–10079 (2007).
Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641 (2002).
Komura, T., Ando, H., Horikoshi, K., Suzuki, H. & Isagi, Y. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters. PLoS ONE 13, e0195385 (2018).
Carreiro, A. R. et al. Metabarcoding, stables isotopes, and tracking: unraveling the trophic ecology of a winter-breeding storm petrel (Hydrobates castro) with a multimethod approach. Mar. Biol. 167, 1–13 (2020).
Alonso, H. et al. An holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Mol. Ecol. 23, 3719–3733 (2014).
del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World. Ostrich to Ducks Vol. 1 (Lynx Editions, Barcelona, 1992).
Brooke, M. Albatrosses and Petrels Across the World (Oxford University Press, Oxford, 2004).
McDuie, F., Weeks, S. J., Miller, M. G. R. & Congdon, B. C. Breeding tropical shearwaters use distant foraging sites when self-provisioning. Mar. Ornithol. 43, 123–129 (2015).
Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).
Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).
Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).
Baduini, C. L. Parental provisioning patterns of wedge-tailed shearwaters and their relation to chick body condition. Condor 104, 823 (2002).
Cecere, J. G., Calabrese, L., Rocamora, G. & Catoni, C. Movement patterns and habitat selection of wedge-tailed shearwaters (Puffinus pacificus) breeding at Aride Island, Seychelles. Waterbirds 36, 432–437 (2013).
Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).
Jaquemet, S., Le Corre, M. & Weimerskirch, H. Seabird community structure in a coastal tropical environment: importance of natural factors and fish aggregating devices (FADs). Mar. Ecol. Prog. Ser. 268, 281–292 (2004).
Miller, M. G. R., Carlile, N., Phillips, J. S., Mcduie, F. & Congdon, B. C. Importance of tropical tuna for seabird foraging over a marine productivity gradient. Mar. Ecol. Prog. Ser. 586, 233–249 (2018).
Spear, L. B., Ainley, D. G. & Walker, W. A. Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud. Avian Biol. 35, 1–99 (2007).
Burger, A. E. Diving depths of shearwaters. Auk 118, 755–759 (2001).
Peck, D. R. & Congdon, B. C. Sex-specific chick provisioning and diving behaviour in the wedge-tailed shearwater Puffinus pacificus. J. Avian Biol. 37, 245–251 (2006).
IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org. Downloaded on 19 March 2020.
Villard, P., Dano, S. & Bretagnolle, V. Morphometrics and the breeding biology of the Tahiti petrel Pseudobulweria rostrata. Ibis 148, 285–291 (2006).
Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. (2020).
Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west pacific. Deep Res. Part II Top. Stud. Oceanogr. 113, 125–144 (2015).
Bretagnolle, V. Le Pétrel de la Chaîne Pterodroma (leucoptera) caledonica: Statut et Menaces. Unpubl. Rep. Prov. Sud, Nouméa, New Caledonia (2001).
Pandolfi, M. & Bretagnolle, V. Seabirds of the Southern Lagoon of New Caledonia; distribution, abundance and threats. Waterbirds 25, 202–214 (2002).
QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project (2018).
Phillips, R. A., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
Vandenabeele, S. P. et al. Excess baggage for birds: inappropriate placement of tags on gannets changes flight patterns. PLoS ONE 9, e92657 (2014).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
Michael, A., Sumner, D., Luque, S. & Fischbach, A. Trip : Tools for the Analysis of Animal Track Data. R package version 1.5.0. (2016).
Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation–maximization binary clustering for behavioural annotation. PLoS ONE 11, e0151984 (2016).
de Grissac, S., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).
Bennison, A. et al. Search and foraging behaviors from movement data: a comparison of methods. Ecol. Evol. 8, 13–24 (2018).
Clay, T. A. et al. Divergent foraging strategies during incubation of an unusually wide-ranging seabird, the Murphy’s petrel. Mar. Biol. 166, 8 (2019).
Mendez, L., Prudor, A. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).
Ravache, A. et al. Flying to the moon: lunar cycle influences trip duration and nocturnal foraging behavior of the wedge-tailed shearwater Ardenna pacifica. J. Exp. Mar. Biol. Ecol. 525, 151322 (2020).
Lund, U. et al. R package ‘circular’: circular Statistics (version 0.4-93). R Packag (2017).
Calenge, C. The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).
Hedd, A. et al. Foraging areas, offshore habitat use and colony overlap by incubating leach’s storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic. PLoS ONE 13, 1–18 (2018).
Bivand, R. & Rundel, C. Interface to Geometry Engine – Open Source (‘GEOS’) (2018).
Hobson, K. A. & Clark, R. G. Turnover of 13 C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110, 638–641 (1993).
Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun. Mass Spectrom. 24, 3456–3460 (2010).
Oksanen, J. et al. Package vegan. R Packag ver (2013).
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
Ceia, F. R., Paiva, V. H., Garthe, S., Marques, J. C. & Ramos, J. A. Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species?. Mar. Biol. 161, 1861–1872 (2014).
Votier, S. C. et al. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J. Appl. Ecol. 47, 487–497 (2010).
Bearhop, S. et al. Stable isotopes indicate sex-specific and longer-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).
Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
Jarman, S. N., Redd, K. S. & Gales, N. J. Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol. Ecol. Notes 6, 268–271 (2006).
Braley, M., Goldsworthy, S. D., Page, B., Steer, M. & Austin, J. J. Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol. Ecol. Resour. 10, 466–474 (2010).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).
Froese, R. & Pauly, D. Fishbase. World Wide Web electronic publication. FishBase (2019).
Palomares, M. L. D. & Pauly, D. SeaLifeBase. World Wide Web Electronic Publication. www.sealifebase.org, version (2014).
Wickham, H. tidyverse: Easily Install and Load ‘Tidyverse’ Packages. R package version 1.0.0 (2016).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).
Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).
Granadeiro, J., Nunes, M., Silva, M. & Furness, R. Flexible foraging strategy of Cory’s shearwater, Calonectris diomedea, during the chick-rearing period. Anim. Behav. 56, 1169–1176 (1998).
Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).
Jennings, S., Pinnegar, J. K., Polunin, N. V. C. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).
Clua, É & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).
Roger, C. Relationships among yellowfin and skipjack tuna, their prey-fish and plankton. Fish. Oceanogr. 3, 133–141 (1994).
Choy, C. A., Popp, B. N., Hannides, C. C. S. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the north pacific subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).
Lipinski, M. R. & Jackson, S. Surface-feeding on cephalopods by procellariiform seabirds in the southern Benguela region, South Africa. J. Zool. 218, 549–563 (1989).
Spear, L. B. & Ainley, D. G. Morphological differences relative to ecological segregation in petrels (family: Procellariidae) of the Southern Ocean And Tropical Pacific. Auk 115, 1017–1033 (1998).
Keenan, S. W. & DeBruyn, J. M. Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition. Sci. Rep. 9, 1–12 (2019).
Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
Mendez, L., Cotté, C., Prudor, A. & Weimerskirch, H. Variability in foraging behaviour of red-footed boobies nesting on Europa Island. Acta Oecol. 72, 87–97 (2016).
Source: Ecology - nature.com