IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).
Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).
Van Vuuren, D. P. et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change 98 303–323 (2015).
Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright, 2016).
Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053–2075 (2007).
IPBES. Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2016).
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Efron, B. & Tibshirani, R. Statistical data analysis in the computer age. Science 253, 390–395 (1991).
Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).
McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).
Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. L. & Purvis, A. Reply to ‘The biodiversity intactness index may underestimate losses’. Nat. Ecol. Evol. 3, 864–865 (2019).
Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).
Phalan, B. et al. How can higher-yield farming help to spare nature? Science 351, 450–451 (2016).
Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).
Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, eaat2616 (2018).
Mouquet, N. et al. Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
Eker, S., Rovenskaya, E., Obersteiner, M. & Langan, S. Practice and perspectives in the validation of resource management models. Nat. Commun. 9, 5359 (2018).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).
Leclère, D. et al. Supporting material for the article entitled “Bending the curve of terrestrial biodiversity needs an integrated strategy” [Data Collection]. http://dare.iiasa.ac.at/57/ (2020).
van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).
IUCN & UNEP-WCMC. The World Database on Protected Areas (WDPA). https://www.protectedplanet.net/ (UNEP-WCMC, accessed October 2017).
Key Biodiversity Area Partnership World Database of Key Biodiversity Areas. http://www.keybiodiversityareas.org/site/requestgis (BirdLife International, accessed 5 October 2017).
Allan, J. R., Venter, O. & Watson, J. E. M. Temporally inter-comparable maps of terrestrial wilderness and the last of the wild. Sci. Data 4, 170187 (2017).
Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).
Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
Hurtt, G. et al. Harmonization of global land-use change and management for the period 850–2100. Preprint at https://doi.org/10.5194/gmd-2019-360 (2020).
IUCN. Red List of Threatened Species. version 2017.3 http://www.iucnredlist.org (2017).
BirdLife International & Handbook of the Birds of the World. Bird Species Distribution Maps of the World. version 7.0. http://datazone.birdlife.org/species/requestdis (2017).
Harfoot, M. et al. Integrated assessment models for ecologists: the present and the future. Glob. Ecol. Biogeogr. 23, 124–143 (2014).
Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [basic] Manual. Discussion Paper Series No. 2012-01 (Center for Social and Environmental Systems Research, NIES, 2012).
Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).
Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).
Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications. https://www.pbl.nl/en/publications/integrated-assessment-of-global-environmental-change-with-IMAGE-3.0 (Netherlands Environmental Assessment Agency (PBL), 2014).
Woltjer, G. et al. The MAGNET Model: Module Description. https://edepot.wur.nl/310764 (LEI, part of Wageningen University and Research Centre, The Hague, 2014).
Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).
Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, 160007 (2016).
Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).
Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).
Rondinini, C. & Visconti, P. Scenarios of large mammal loss in Europe for the 21st century. Conserv. Biol. 29, 1028–1036 (2015).
Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).
Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
Di Marco, M. et al. Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling. Glob. Change Biol. 25, 2763–2778 (2019).
Hoskins, A. J. et al. BILBI: supporting global biodiversity assessment through high-resolution macroecological modelling. Environ. Model. Softw. 104806 (2020).
Chaudhary, A. & Brooks, T. M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 121, 178–187 (2017).
UNEP & SETAC. Global Guidance for Life Cycle Impact Assessment Indicators, vol. 1 (United Nations Environment Programme, 2016).
Chaudhary, A., Verones, F., de Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).
Alkemade, R. et al. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12, 374–390 (2009).
De Palma, A. et al. Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012. Preprint at https://doi.org/10.1101/311688 (2018).
Hill, S. L. L. et al. Worldwide impacts of past and projected future land-use change on local species richness and the Biodiversity Intactness Index. Preprint at https://doi.org/10.1101/311787 (2018).
Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures. Adv. Ecol. Res. 58, 201–241 (2018).
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).
Source: Ecology - nature.com