in

Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation

  • 1.

    Le Mire, G. et al. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 20, 299–313. https://doi.org/10.25518/1780-4507.12717 (2016).

    Article  Google Scholar 

  • 2.

    Altieri, M. Á. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 27, 37–46. https://doi.org/10.1016/0167-8809(89)90070-4 (1989).

    Article  Google Scholar 

  • 3.

    Posmyk, M. M. & Szafrańska, K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 7, 48. https://doi.org/10.3389/fpls.2016.00748 (2016).

    Article  Google Scholar 

  • 4.

    Szparaga, A. & Kocira, S. Generalized logistic functions in modelling emergence of Brassica napus L.. PLoS ONE 13, e0201980. https://doi.org/10.1371/journal.pone.0201980 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Koo, A. J. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 17, 51–80. https://doi.org/10.1007/s11101-017-9510-8 (2018).

    CAS  Article  Google Scholar 

  • 6.

    Trevisan, S., Manoli, A., Ravazzolo, L., Franceschi, C. & Quaggiotti, S. mRNA-sequencing analysis reveals transcriptional changes in root of maize seedlings treated with two increasing concentrations of a new biostimulant. J. Agric. Food Chem. 65, 9956–9969. https://doi.org/10.1021/acs.jafc.7b03069 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Szparaga, A. et al. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 9, 1401. https://doi.org/10.3389/fpls.2018.01401 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Cocetta, G. & Ferrante, A. Nutritional and Nutraceutical Value of Vegetable Crops as Affected by Biostimulants Application. In: eLS. (Wiley, Chichester, 2020). https://doi.org/10.1002/9780470015902.a0028906.

  • 9.

    Kocira, S. Effect of applying a biostimulant containing seaweed and amino acids on the content of fiber fractions in three soybean cultivars. Legume Res. 42, 341–347. https://doi.org/10.18805/LR-412 (2019).

    Article  Google Scholar 

  • 10.

    Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. https://eur-lex.europa.eu/eli/reg/2019/1009/oj (2019).

  • 11.

    Chehade, A., Chami, A., Angelica, S., Pascali, D. & Paolo, F. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food Agric. 98, 1426–1436. https://doi.org/10.1002/jsfa.8610 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Stirk, W. A., Tarkowská, D., Turečová, V., Strnad, M. & van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 26, 561–567. https://doi.org/10.1007/s10811-013-0062-z (2014).

    CAS  Article  Google Scholar 

  • 13.

    Szczepanek, M., Siwik-Ziomek, A. & Wilczewski, E. Effect of biostimulant on accumulation of Mg in winter oilseed rape under different mineral fertilization rates. J. Elementol. 22, 1375–1385. https://doi.org/10.5601/jelem.2017.22.1.1317 (2017).

    Article  Google Scholar 

  • 14.

    Kocira, S. et al. Effect of an amino acids-containing biostimulator on common bean crop. Przem. Chem. 94(10), 1732–1736. https://doi.org/10.15199/62.2015.10.16 (2015).

    CAS  Article  Google Scholar 

  • 15.

    Calvo, P., Nelson, L. & Kloepper, J. W. Agricultural uses of plant biostimulants. Plant Soil. 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8 (2014).

    CAS  Article  Google Scholar 

  • 16.

    Colla, G. et al. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037 (2015).

    CAS  Article  Google Scholar 

  • 17.

    Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R. & Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 26, 465–490. https://doi.org/10.1007/s10811-013-0101-9 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Ertani, A., Pizzeghello, D., Francioso, O., Tinti, A. & Nardi, S. Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules 21, 205–219. https://doi.org/10.3390/molecules21020205 (2016).

    CAS  Article  PubMed Central  Google Scholar 

  • 19.

    Michałek, W., Kocira, A., Findura, P., Szparaga, A. & Kocira, S. The influence of biostimulant Asahi SL on the photosynthetic activity of selected cultivars of Phaseolus vulgaris L.. Rocz. Ochr. Sr. 20, 1286–1301 (2018).

    Google Scholar 

  • 20.

    Hara, P., Szparaga, A. & Czerwińska, E. Ecological methods used to control fungi that cause diseases of the crop plant. Rocz. Ochr. Sr. 20, 1764–1775 (2018).

    Google Scholar 

  • 21.

    Mejía-Teniente, L. et al. Use of elicitors as an approach for sustainable agriculture. Afr. J. Biotechnol. 9, 9155–9162 (2010).

    Google Scholar 

  • 22.

    Chandler, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B. 366, 1987–1998. https://doi.org/10.1098/rstb.2010.0390 (2011).

    Article  Google Scholar 

  • 23.

    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7 (2014).

    Article  Google Scholar 

  • 24.

    Brown, P. & Saa, S. Biostimulants in agriculture. Front. Plant Sci. 6, 671. https://doi.org/10.3389/fpls.2015.00671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S. & Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Technol. Agric. 4, 5. https://doi.org/10.1186/s40538-017-0089-5 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Grabowska, A., Kunicki, E., Sekara, A., Kalisz, A. & Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 77, 37–48. https://doi.org/10.2478/v10032-012-0014-1 (2012).

    Article  Google Scholar 

  • 27.

    Kolomaznik, K., Pecha, J., Friebrova, V., Janacova, D. & Vasek, V. Diffusion of biostimulators into plant tissues. Heat Mass Transf. 48, 1505–1512. https://doi.org/10.1007/s00231-012-0998-6 (2012).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Gozzo, F. & Faoro, F. Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. J. Agric. Food Chem. 61, 12473–12491. https://doi.org/10.1021/jf404156x (2013).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Bashan, Y., de Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil. 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x (2014).

    CAS  Article  Google Scholar 

  • 30.

    Cox, M. & Wong, B. Biological crop chemistry primer: Green shoots through green products, Piper Jaffray industry note. Web site 2013 [cited 4 May 2020]. https://files.ctctcdn.com/f569d87b001/8445a3b3-dcf8-4654-8d3b-bd079e55022d.pdf.

  • 31.

    Arora, N. K., Khare, E. & Maheshwari, D. K. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In Plant Growth and Health Promoting Bacteria (ed Maheshwari, D.K.) 97–116 (Springer, Dordrecht, 2010). https://doi.org/10.1007/978-3-642-13612-2_5.

  • 32.

    Walters, D. R., Ratsep, J. & Havis, N. D. Controlling crop diseases using induced resistance: Challenges for the future. J. Exp. Bot. 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Rodriguez-Saona, C., Kaplan, I., Braasch, J., Chinnasamy, D. & Williams, L. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control. 59(2), 294–303. https://doi.org/10.1016/j.biocontrol.2011.06.017 (2011).

    CAS  Article  Google Scholar 

  • 34.

    Łączyński, A. et al. Wyniki produkcji roślinnej w 2017 r. (Główny Urząd Statystyczny Warszawa, 2018).

  • 35.

    Szparaga, A. et al. Towards sustainable agriculture—agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability. 11, 4575. https://doi.org/10.3390/su11174575 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Kocira, S. et al. Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars. Legume Res. 41, 589–593 (2018).

    Google Scholar 

  • 37.

    Kocira, A., Świeca, M., Kocira, S., Złotek, U. & Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 25, 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Kocira, S. Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chil. J. Agric. Res. 79, 17–25. https://doi.org/10.4067/S0718-58392019000100017 (2019).

    Article  Google Scholar 

  • 39.

    Kocira, A. et al. Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 10, 189. https://doi.org/10.3390/agronomy10020189 (2020).

    CAS  Article  Google Scholar 

  • 40.

    Rouphael, Y., Cardarelli, M., Bonini, P. & Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8, 131. https://doi.org/10.3389/fpls.2017.00131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Shahabivand, S., Padash, A., Aghaee, A., Nasiri, Y. & Rezaei, P. F. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 8, 2333–2344. https://doi.org/10.22034/ijpp.2018.539109 (2018).

    Article  Google Scholar 

  • 42.

    Fujita, Y., Fujita, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509–525. https://doi.org/10.1007/s10265-011-0412-3 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Xiong, H. et al. Overexpression of OsMYB48–1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9, e92913. https://doi.org/10.1371/journal.pone0092913 (2014).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Trivellini, A. et al. Survive or die? A molecular insight into salt-dependant signaling network. Environ. Exp. Bot. 132, 140–153. https://doi.org/10.1016/j.envexpbot.2016.07.007 (2016).

    CAS  Article  Google Scholar 

  • 45.

    Hare, P. D. & Cress, W. A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21, 79–102. https://doi.org/10.1023/A:1005703923347 (1997).

    CAS  Article  Google Scholar 

  • 46.

    Mattioli, R., Costantino, P. & Trovato, M. Proline accumulation in plants. Plant Signal. Behav. 4, 1016–1018. https://doi.org/10.4161/psb.4.11.9797 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Cheynier, V., Comte, G., Davies, K. M. & Lattanzio, V. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Bulgari, R., Trivellini, A. & Ferrante, A. Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front. Plant Sci. 9, 1870. https://doi.org/10.3389/fpls.2018.01870 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Rouphael, Y. et al. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phychol. 29, 459–470. https://doi.org/10.1007/s10811-016-0937-x (2017).

    CAS  Article  Google Scholar 

  • 50.

    Vanacker, H., Carver, T. L. W. & Foyer, C. H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol. 117, 1103–1114. https://doi.org/10.1104/pp.117.3.1103 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Lawlor, D. W. & Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 103, 561–579. https://doi.org/10.1093/aob/mcn244 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Ertani, A., Schiavon, M., Altissimo, A., Franceschi, A. & Nardi, S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 174, 496–503. https://doi.org/10.1002/jpln.201000075 (2011).

    CAS  Article  Google Scholar 

  • 53.

    Bettoni, M. M. et al. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Comp. Anal. 51, 37–44. https://doi.org/10.1016/j.jfca.2016.06.008 (2016).

    CAS  Article  Google Scholar 

  • 54.

    Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant-derived biostimulant stimulates short-term growth of salt stressed Zea mays L. plants. Plant Soil. 364, 145–158. https://doi.org/10.1007/s11104-012-1335-z (2013).

    CAS  Article  Google Scholar 

  • 55.

    Ertani, A. et al. The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chem. Biol. Technol. Agric. 2, 11. https://doi.org/10.1186/s40538-015-0039-z (2015).

    CAS  Article  Google Scholar 

  • 56.

    Oboh, G. & Ademosun, A. O. Characterization of the antioxidant properties of phenolic extracts from some citrus peels. J. Food Sci. Technol. 49, 729–736. https://doi.org/10.1007/s13197-010-0222-y (2012).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Serrano, M. et al. Antioxidant and nutritive constituents during sweet pepper development and ripening are enhanced by nitrophenolate treatments. Food Chem. 118, 497–503. https://doi.org/10.1016/j.foodchem.2009.05.006 (2010).

    CAS  Article  Google Scholar 

  • 58.

    Krasensky, J., Carmody, M., Sierla, M. & Kangasjärvi, J. Ozone and reactive oxygen species. Wiley Online Library Web side. 2017 March 20 [cited 4 May 2020]. https://doi.org/10.1002/9780470015902.a0001299.pub3.

  • 59.

    Ciarmiello, L. F., Woodrow, P., Fuggi, A., Pontecorvo, G. & Carillo, P. Plant genes for abiotic stress. In Abiotic Stress in Plants—Mechanisms and Adaptations (eds Shanker, A. & Venkateswarlu, B.) 283–308 (InTech, Croatia, 2011).

    Google Scholar 

  • 60.

    Woziak, E., Blaszczak, A., Wiatrak, P. & Canady, M. Biostimulant mode of action: Impact of biostimulant on whole-plant. In The Chemical Biology of Plant Biostimulants (eds Geelen, D. & Xu, L.) 207–227 (Wiley, Hoboken, 2020).

    Google Scholar 

  • 61.

    Woziak, E., Blaszczak A., Wiatrak, P. & Canady M. Biostimulant mode of action: Impact of biostimulant on cellular level. In The Chemical Biology of Plant Biostimulants (eds. Geelen, D. & Xu, L.) 229–243 (Wiley, Hoboken, 2020).

  • 62.

    Upadhyay, S. & Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2015/504253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 192, 1–15. https://doi.org/10.1002/jcp.10119 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Los, F. G. B., Zielinski, A. A. F., Wojeicchowski, J. P., Nogueira, A. & Demiate, I. M. Beans (Phaseolus vulgaris L.): Whole seeds with complex chemical composition. Curr. Opin. Food Sci. 19, 63–71. https://doi.org/10.1016/j.cofs.2018.01.010 (2018).

    Article  Google Scholar 

  • 65.

    Abbas, S. M. The influence of biostimulants on the growth and on the biochemical composition of viciafaba CV. Giza 3 beans. Rom. Biotechnol. Lett. 18, 8061–8068 (2013).

    ADS  CAS  Google Scholar 

  • 66.

    Aloni, R., Langhans, M., Aloni, E. & Ullrich, C. I. Role of cytokinin in the regulation of root gravitropism. Planta 220, 177–182. https://doi.org/10.1007/s00425-004-1381-8 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Aloni, R., Aloni, E., Langhans, M. & Ullrich, C. I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97, 883–893. https://doi.org/10.1093/aob/mcl027 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Aloni, R., Tollier, M. T. & Monties, B. The role of auxin and gibberellin in controlling lignin formation in primary phloem fibers and in xylem of Coleus-blumei stems. Plant Physiol. 94, 1743–1747. https://doi.org/10.1104/pp.94.4.1743 (1990).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Mauriat, M. & Moritz, T. Analyses of GA20ox– and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J. 58, 989–1003. https://doi.org/10.1111/j.1365-313X.2009.03836.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Dayan, J., Schwarzkopf, M., Avni, A. & Aloni, R. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol. J. 8, 425–435. https://doi.org/10.1111/j.1467-7652.2009.00480.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 71.

    Dombrowski, J. E. & Martin, R. C. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Sci. 176, 390–396. https://doi.org/10.1016/j.plantsci.2008.12.005 (2009).

    CAS  Article  Google Scholar 

  • 72.

    Gómez-Merino, F. C. & Trejo-Téllez, L. I. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In Biotic and Abiotic Stress Tolerance in Plants (ed Vats, S) 137–172 (Springer, Singapore, 2018). https://doi.org/10.1007/978-981-10-9029-5_6.

  • 73.

    Nemes, N. Comparatice analysis of organic and non-organic farming systems: A critical assessment of farm profitability. FAO Web side. [cited 4 May 2020]. https://www.fao.org/tempref/docrep/fao/011/ak355e/ak355e00.pdf (2017).

  • 74.

    Mariano, R. A. Profitability analysis of irradiated carrageenan as a biostimulant in small-scale rice farming in selected provinces in the Philippines. J. Glob. Bus. Trade. 14, 15–30 (2018).

    Article  Google Scholar 

  • 75.

    Abad, L. V., Aranilla, C. T., Relleve, L. S. & Dela Rosa, A. M. Emerging applications of radiation-modified carrageenans. Nucl. Instrum. Methods B. 336, 167–172. https://doi.org/10.1016/j.nimb.2014.07.005 (2014).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Khan, W. et al. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399. https://doi.org/10.1007/s00344-009-9103-x (2009).

    CAS  Article  Google Scholar 

  • 77.

    Jesus, A. A., Lima, S. F., Vendruscolo, E. P., Alvarez, R. C. F. & Contardi, L. M. Agroeconomic analysis of sweet corn grown with biostimulant applied on seed. Rev. Fac. Agron. 115, 119–127 (2016).

    Google Scholar 

  • 78.

    Zhang, X. & Schmidt, R. E. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 40, 1344–1249. https://doi.org/10.2135/cropsci2000.4051344x (2000).

    CAS  Article  Google Scholar 

  • 79.

    Crepaldi, S. A. Contabilidade Rural: Uma Abordagem Decisorial 2nd edn. (São Paulo, Atlas, 1998).

    Google Scholar 

  • 80.

    Kocira, S., Szparaga, A., Kuboń, M., Czerwińska, E. & Piskier, T. Morphological and biochemical responses of Glycine max (L.) Merr. to the use of seaweed extract. Agronomy 9, 93. https://doi.org/10.3390/agronomy9020093 (2019).

    CAS  Article  Google Scholar 

  • 81.

    Świeca, M., Gawlik-Dziki, U., Kowalczyk, D. & Złotek, U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 140, 87–95. https://doi.org/10.1016/j.scienta.2012.04.005 (2012).

    CAS  Article  Google Scholar 

  • 82.

    Singleton, V. & Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).

    CAS  Google Scholar 

  • 83.

    Lamaison, J. L. C. & Carnet, A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta Helv. 65, 315–320. https://doi.org/10.1016/j.nfs.2018.10.001 (1990).

    CAS  Article  Google Scholar 

  • 84.

    Fuleki, T. & Francis, F. J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33, 72–77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x (1968).

    CAS  Article  Google Scholar 

  • 85.

    Pulido, R., Bravo, L. & Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402. https://doi.org/10.1021/jf9913458 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 86.

    Jimenez-Alvarez, D. et al. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J. Agric. Food Chem. 56(10), 3470–3477. https://doi.org/10.1021/jf703723ss (2008).

    CAS  Article  PubMed  Google Scholar 

  • 87.

    Sancho, R. A. S., Pavan, V. & Pastore, G. M. Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Res. Int. 76, 74–78. https://doi.org/10.1016/j.foodres.2014.11.042 (2015).

    CAS  Article  Google Scholar 

  • 88.

    Carillo, P. & Gibon, Y. Protocol: extraction and determination of proline. [cited 4 January 2020]. https://prometheuswiki.publish.csiro.au/tiki.

  • 89.

    Redmile-Gordon, M. A., Armenise, E., White, R. P., Hirsch, P. R. & Goulding, K. W. T. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol. Biochem. 67, 166–173. https://doi.org/10.1016/j.soilbio.2013.08.017 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 90.

    Goñi, I., Garcia-Alonso, A. & Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17(3), 427–437. https://doi.org/10.1016/S0271-5317(97)00010-9 (1997).

    Article  Google Scholar 

  • 91.

    AOCS Approved Procedure Ba 6a-05. [cited 2 September 2020]. https://www.ssco.com.tw/Ankom/PDF_file/Crude%20Fiber%20Method%20A200.pdf.

  • 92.

    Szparaga, A. Wybrane Właściwości Fizyczne, Mechaniczne, Chemiczne i Plon Nasion Fasoli Zwykłej (Phaseolus Vulgaris L.) w Zależności od Metody Aplikacji Biostymulatorów. (Polskie Towarzystwo Inżynierii Rolniczej, 2019).

  • 93.

    Szparaga, A. et al. Survivability of probiotic bacteria in model systems of non-fermented and fermented coconut and hemp milks. Sustainability. 11, 6093. https://doi.org/10.3390/su11216093 (2019).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach