in

Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments

  • 1.

    Plastics Europe. Plastics—the Facts 2019; 2019. https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf.

  • 2.

    Ritchie H, Roser M. Plastic pollution. Our World in Data; 2018. https://ourworldindata.org/plastic-pollution.

  • 3.

    UNEP. Single-use plastics: a roadmap for sustainability; 2018. https://wedocs.unep.org/bitstream/handle/20.500.11822/25496/singleUsePlastic_sustainability.pdf?sequence=1&isAllowed=y.

  • 4.

    Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782. https://doi.org/10.1126/sciadv.1700782.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science. 2015;347:768–71. https://doi.org/10.1126/science.1260352.

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44:842–52.

    CAS  PubMed  Google Scholar 

  • 7.

    World Economic Forum. Ellen MacArthur Foundation. The new plastics economy: rethinking the future of plastics; 2016. www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf.

  • 8.

    Stelfox M, Hudgins J, Sweet M. A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs. Mar Pollut Bull. 2016;11:6–17.

    Google Scholar 

  • 9.

    Rios LM, Moore C, Jones PR. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull. 2007;54:1230–7.

    CAS  PubMed  Google Scholar 

  • 10.

    Rochman CM, Hoh E, Kurobe T, Teh SJ. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep. 2013;3:32632. https://doi.org/10.1038/srep03263.

    Article  Google Scholar 

  • 11.

    Setala O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut. 2014;185:77–83.

    CAS  PubMed  Google Scholar 

  • 12.

    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere. 2008;73:429–42.

    CAS  PubMed  Google Scholar 

  • 13.

    Harrison JP, Boardman C, O’Callaghan K, Delort AM, Song J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R Soc Open Sci. 2018;5:171792. https://doi.org/10.1098/rsos.171792.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.

    CAS  Google Scholar 

  • 15.

    Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484–504.

    CAS  PubMed  Google Scholar 

  • 16.

    Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stabil. 2006;91:367–76.

    CAS  Google Scholar 

  • 17.

    Yamamoto M, Witt U, Skupin G, Beimborn D, Müller J. Biodegradable aliphatic-aromatic polyesters: “Ecoflex®”. Biopolymers Online; 2005.

  • 18.

    Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.

    Google Scholar 

  • 19.

    Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng. 2011;42:856–73.

    Google Scholar 

  • 20.

    Jendrossek D, Schirmer A, Schlegel HG. Biodegradation polyhydroxyalkanoic acids. Appl Microbiol Biot. 1996;46:451–63.

    CAS  Google Scholar 

  • 21.

    Kasuya K, Ohura T, Masuda K, Doi Y. Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases. Int J Biol Macromol. 1999;24:329–36.

    CAS  PubMed  Google Scholar 

  • 22.

    Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature. 1977;270:76–78.

    CAS  PubMed  Google Scholar 

  • 23.

    Jaeger KE, Steinbuchel A, Jendrossek D. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Appl Environ Microbiol. 1995;61:3113–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Murphy CA, Cameron JA, Huang SJ, Vinopal RT. Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol. 1996;62:456–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, et al. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol. 2005;67:778–88.

    CAS  PubMed  Google Scholar 

  • 26.

    Murphy CA, Cameron JA, Huang SJ, Vinopal RT. A second polycaprolactone depolymerase from Fusarium, a lipase distinct from cutinase. Appl Microbiol Biotechnol. 1998;50:692–6.

    CAS  Google Scholar 

  • 27.

    Ando Y, Yoshikawa K, Yoshikawa T, Nishioka M, Ishioka R, Yakabe Y. Biodegradability of poly(tetramethylene succinate-co-tetramethylene adipate): I. Enzymatic hydrolysis. Polym Degrad Stabil. 1998;61:129–37.

    CAS  Google Scholar 

  • 28.

    Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, Watanabe T, et al. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol. 2013;97:2951–9.

    CAS  PubMed  Google Scholar 

  • 29.

    Muroi F, Tachibana Y, Soulenthone P, Yamamoto K, Mizuno T, Sakurai T, et al. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym Degrad Stabil. 2017;137:11–22.

    CAS  Google Scholar 

  • 30.

    Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol. 2006;72:244–51.

    CAS  PubMed  Google Scholar 

  • 31.

    Williams DF. Enzymic hydrolysis of polylactic acid. Eng Med. 1981;10:5–7.

    Google Scholar 

  • 32.

    Nakayama A, Yamano N, Kawasaki N. Biodegradation in seawater of aliphatic polyesters. Polym Degrad Stabil. 2019;166:290–9.

    CAS  Google Scholar 

  • 33.

    Luzier WD. Materials derived from biomass biodegradable materials. Proc Natl Acad Sci USA. 1992;89:839–42.

    CAS  PubMed  Google Scholar 

  • 34.

    Kasuya K, Takagi K, Ishiwatari S, Yoshida Y, Doi Y. Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degrad Stabil. 1998;59:327–32.

    CAS  Google Scholar 

  • 35.

    Teramoto N, Urata K, Ozawa K, Shibata M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stabil. 2004;86:401–9.

    CAS  Google Scholar 

  • 36.

    Sekiguchi T, Saika A, Nomura K, Watanabe T, Fujimoto Y, Enoki M, et al. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ε-caprolactone)-degrading bacteria. Polym Degrad Stabil. 2011;96:1397–403.

    CAS  Google Scholar 

  • 37.

    Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stabil. 1998;59:209–14.

    CAS  Google Scholar 

  • 38.

    Witt U, Müller RJ, Deckwer WD. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties. J Environ Polym Degrad. 1995;3:215–23.

    CAS  Google Scholar 

  • 39.

    Bagheri AR, Laforsch C, Greiner A, Agarwal S. Fate of so‐called biodegradable polymers in seawater and freshwater. Glob Chall. 2017;1:1700048. https://doi.org/10.1002/gch2.201700048.

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Zambrano MC, Pawlak JJ, Daystar J, Ankeny M, Goller CC, Venditti RA. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: effects of cellulose and for polyester-based microfibers on the microbiome. Mar Pollut Bull. 2020;151:110826. https://doi.org/10.1016/j.marpolbul.2019.110826.

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RA. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol. 2006;188:3849–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Yang JC, Madupu R, Durkin SA, Ekborg NA, Pedamallu CS, Hostetler JB, et al. The Complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS ONE. 2009;4:e6085. https://doi.org/10.1371/journal.pone.0006085.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Sawant SS, Salunke BK, Taylor LE, Kim BS. Enhanced agarose and xylan degradation for production of polyhydroxyalkanoates by co-culture of marine bacterium, Saccharophagus degradans and its contaminant, Bacillus cereus. Appl Sci. 2017;7. https://doi.org/10.3390/app7030225.

  • 44.

    Liu G, Wu SM, Jin WH, Sun CM. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities. Sci Rep. 2016;6:18726. https://doi.org/10.1038/srep18726.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Ramesh S, Mathivanan N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microb Biotechnol. 2009;25:2103–11.

    CAS  Google Scholar 

  • 46.

    Nogi Y, Yoshizumi M, Miyazaki M. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol. 2014;64:1149–53.

    CAS  PubMed  Google Scholar 

  • 47.

    Sedlacek P, Slaninova E, Enev V, Koller M, Nebesarova J, Marova I, et al. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl Microbiol Biot. 2019;103:1905–17.

    CAS  Google Scholar 

  • 48.

    Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett. 1995;128:219–28.

    Google Scholar 

  • 49.

    Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol Mol Biol Rev 1999;63:21–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 1989;22:694–7.

    CAS  Google Scholar 

  • 51.

    Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1995;28:4822–8.

    CAS  Google Scholar 

  • 52.

    Abe H, Doi Y. Side-chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyalkanoic acids. Biomacromolecules. 2002;3:133–8.

    CAS  PubMed  Google Scholar 

  • 53.

    Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y. Physical-properties and biodegradability of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1994;27:878–80.

    CAS  Google Scholar 

  • 54.

    Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv. 2007;25:148–75.

    CAS  PubMed  Google Scholar 

  • 55.

    Rehm BHA, Kruger N, Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis—the phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein coenzyme A transferase. J Biol Chem. 1998;273:24044–51.

    CAS  PubMed  Google Scholar 

  • 56.

    Rehm BHA, Mitsky TA, Steinbüchel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol. 2001;67:3102–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Fukui T, Shiomi N, Doi Y. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol. 1998;180:667–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Chek MF, Kim SY, Mori T, Arsad H, Samian MR, Sudesh K, et al. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Sci Rep. 2017;7:5312. https://doi.org/10.1038/s41598-017-05509-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Mezzolla V, D’Urso OF, Poltronieri P. Role of PhaC type I and type II enzymes during PHA biosynthesis. Polymer. 2018;10:910. https://doi.org/10.3390/polym10080910.

    CAS  Article  Google Scholar 

  • 60.

    Rehm BHA. Polyester synthases: natural catalysts for plastics. Biochem J. 2003;376:15–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Tsuge T, Hyakutake M, Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol. 2015;99:6231–40.

    CAS  PubMed  Google Scholar 

  • 62.

    Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8.

    CAS  PubMed  Google Scholar 

  • 63.

    Higuchi-Takeuchi M, Morisaki K, Numata K. A Screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater. Front Microbiol. 2016;7:1509. https://doi.org/10.3389/fmicb.2016.01509.

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol. 2006;188:3763–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrateproducing bacterium isolated from surface seawater. Int J Syst Evol Microbiol. 2017;67:237–42.

    CAS  PubMed  Google Scholar 

  • 66.

    Mohandas SP, Balan L, Jayanath G, Anoop BS, Philip R, Cubelio SS, et al. Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source. Int J Biol Macromol. 2018;119:380–92.

    CAS  PubMed  Google Scholar 

  • 67.

    Sathiyanarayanan G, Saibaba G, Kiran GS, Selvin J. Process optimization and production of polyhydroxybutyrate using palm jaggery as economical carbon source by marine sponge-associated Bacillus licheniformis MSBN12. Bioproc. Biosyst Eng. 2013;36:1817–27.

    CAS  Google Scholar 

  • 68.

    Lopez-Cortes A, Lanz-Landazuri A, Garcia-Maldonado JQ. Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microbiol Ecol. 2008;56:112–20.

    CAS  Google Scholar 

  • 69.

    Prabhu NN, Santimano MC, Mavinkurve S, Bhosle SN, Garg S. Native granule associated short chain length polyhydroxyalkanoate synthase from a marine derived Bacillus sp. NQ-11/A2. Anton Leeuw. 2010;97:41–50.

    CAS  Google Scholar 

  • 70.

    Hong JW, Song HS, Moon YM, Hong YG, Bhatia SK, Jung HR, et al. Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess Biosyst Eng. 2019;42:603–10.

    CAS  PubMed  Google Scholar 

  • 71.

    Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suarez LEC, Arasu MV, et al. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microb Cell Fact. 2014;13:114. https://doi.org/10.1186/s12934-014-0114-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Yamada M, Yukita A, Hanazumi Y, Yamahata Y, Moriya H, Miyazaki M, et al. Poly(3-hydroxybutyrate) production using mannitol as a sole carbon source by Burkholderia sp. AIU M5M02 isolated from a marine environment. Fish Sci. 2018;84:405–12.

    CAS  Google Scholar 

  • 73.

    Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acid Sci USA. 2005;102:10913–8.

    CAS  Google Scholar 

  • 74.

    Numata K, Morisaki K, Tomizawa S, Ohtani M, Demura T, Miyazaki M. Synthesis of poly- and oligo(hydroxyalkanoate)s by deep-sea bacteria, Colwellia spp., Moritella spp., and Shewanella spp. Polym J. 2013;45:1094–100.

    CAS  Google Scholar 

  • 75.

    Hai T, Lange D, Rabus R, Steinbüchel A. Polyhydroxyalkanoate (PHA) accumulation in sulfate-reducing bacteria and identification of a class III PHA synthase (PhaEC) in Desulfococcus multivorans. Appl Environ Microbiol. 2004;70:4440–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Wang H, Tomasch J, Jarek M, Wagner-Dobler I. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol. 2014;5:311. https://doi.org/10.3389/fmicb.2014.00311.

    Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Xiao N, Jiao NZ. Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability. Appl Environ Microbiol. 2011;77:7445–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S. Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol. 2010;47:283–7.

    CAS  PubMed  Google Scholar 

  • 79.

    Simon-Colin C, Raguénès G, Cozien J, Guezennec JG. Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol. 2008;104:1425–32.

    CAS  PubMed  Google Scholar 

  • 80.

    Lemechko P, Le Fellic M, Bruzaud S. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int J Biol Macromol. 2019;128:429–34.

    CAS  PubMed  Google Scholar 

  • 81.

    Han X, Satoh Y, Kuriki Y, Seino T, Fujita S, Suda T, et al. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene. J Biosci Bioeng. 2014;118:514–9.

    CAS  PubMed  Google Scholar 

  • 82.

    Doronina NV, Trotsenko YA, Tourova TP. Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol. 2000;50:1849–59.

    CAS  PubMed  Google Scholar 

  • 83.

    Liu XJ, Zhang J, Hong PH, Li ZJ. Microbial production and characterization of poly-3-hydroxybutyrate by Neptunomonas antarctica. Peerj. 2016;4:e2291. https://doi.org/10.7717/peerj.2291.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 84.

    Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order ‘Rhodobacterales’. Int J Syst Evol Microbiol. 2004;54:1129–36.

    CAS  PubMed  Google Scholar 

  • 85.

    Numata K, Morisaki K. Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sustain Chem Eng. 2015;3:569–73.

    CAS  Google Scholar 

  • 86.

    Boyandin AN, Kalacheva GS, Rodicheva EK, Volova TG. Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria. Microbiology. 2008;77:318–23.

    CAS  Google Scholar 

  • 87.

    Wang Q, Zhang HX, Chen Q, Chen XL, Zhang YZ, Qi QS. A marine bacterium accumulates polyhydroxyalkanoate consisting of mainly 3-hydroxydodecanoate and 3-hydroxydecanoate. World J Microbiol Biotechnol. 2010;26:1149–53.

    Google Scholar 

  • 88.

    Simon-Colin C, Alain K, Colin S, Cozien J, Costa B, Guezennec JG, et al. A novel mcl PHA-producing bacterium, Pseudomonas guezennei sp. nov., isolated from a ‘kopara’ mat located in Rangiroa, an atoll of French Polynesia. J Appl Microbiol. 2008;104:581–6.

    CAS  PubMed  Google Scholar 

  • 89.

    Jamil N, Ahmed N, Edwards DH. Characterization of biopolymer produced by Pseudomonas sp. CMG607w of marine origin. J Gen Appl Microbiol. 2007;53:105–9.

    CAS  PubMed  Google Scholar 

  • 90.

    Higuchi-Takeuchi M, Numata K. Acetate-inducing metabolic states enhance polyhydroxyalkanoate production in marine purple non-sulfur bacteria under aerobic conditions. Front Bioeng Biotechnol. 2019;7:118. https://doi.org/10.3389/fbioe.2019.00118.

    Article  PubMed  PubMed Central  Google Scholar 

  • 91.

    Higuchi-Takeuchi M, Morisaki K, Toyooka K, Numata K. Synthesis of high-molecular-weight polyhydroxyalkanoates by marine photosynthetic purple bacteria. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0160981.

  • 92.

    Gonzalez-Garcia Y, Nungaray J, Cordova J, Gonzalez-Reynoso O, Koller M, Atlic A, et al. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biotechnol. 2008;35:629–33.

    CAS  PubMed  Google Scholar 

  • 93.

    Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, et al. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol. 2010;12:2658–76.

    CAS  PubMed  Google Scholar 

  • 94.

    Shrivastav A, Mishra SK, Mishra S. Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol. 2010;46:255–60.

    CAS  PubMed  Google Scholar 

  • 95.

    Sasidharan RS, Bhat SG, Chandrasekaran M. Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Ann Microbiol. 2015;65:455–65.

    CAS  Google Scholar 

  • 96.

    Mohandas SP, Balan L, Lekshmi N, Cubelio SS, Philip R, Bright SIS. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J Appl Microbiol. 2017;122:698–707.

    CAS  PubMed  Google Scholar 

  • 97.

    Wei YH, Chen WC, Wu HS, Janarthanan OM. Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous Vibrio sp. BM-1 isolated from marine environment. Mar Drugs. 2011;9:615–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 98.

    Numata K, Doi Y. Biosynthesis of Polyhydroxyalkanaotes by a novel facultatively anaerobic Vibrio sp. under marine conditions. Mar Biotechnol. 2012;14:323–31.

    CAS  PubMed  Google Scholar 

  • 99.

    Stabili L, Cardone F, Alifano P, Tredici SM, Piraino S, Corriero G, et al. Epidemic Mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio Bacterium. Microb Ecol. 2012;64:802–13.

    PubMed  Google Scholar 

  • 100.

    Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesh K, et al. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiol. 2014;14:318. https://doi.org/10.1186/s12866-014-0318-z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 101.

    Doi Y, Kanesawa Y, Tanahashi N, Kumagai Y. Biodegradation of microbial polyesters in the marine-environment. Polym Degrad Stabil. 1992;36:173–7.

    CAS  Google Scholar 

  • 102.

    Tsuji H, Suzuyoshi K. Environmental degradation of biodegradable polyesters 2. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in natural dynamic seawater. Polym Degrad Stabil. 2002;75:357–65.

    CAS  Google Scholar 

  • 103.

    Tsuji H, Suzuyoshi K. Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R)-3-hydroxybutyrate], and poly(L-lactide) films in controlled static seawater. Polym Degrad Stabil. 2002;75:347–55.

    CAS  Google Scholar 

  • 104.

    Rutkowska M, Krasowska K, Heimowska A, Adamus G, Sobota M, Musiol M, et al. Environmental degradation of blends of atactic poly (R,S)-3-hydroxybutyrate with natural PHBV in Baltic sea water and compost with activated sludge. J Polym Environ. 2008;16:183–91.

    CAS  Google Scholar 

  • 105.

    Volova TG, Boyandin AN, Vasil’ev AD, Karpov VA, Kozhevnikov IV, Prudnikova SV, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in the South China Sea and identification of PHA-degrading bacteria. Microbiology. 2011;80:252. https://doi.org/10.1134/S0026261711020184.

    CAS  Article  Google Scholar 

  • 106.

    Thellen C, Coyne M, Froio D, Auerbach M, Wirsen C, Ratto JA. A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films. J Polym Environ. 2008;16:1–11.

    CAS  Google Scholar 

  • 107.

    Deroine M, Cesar G, Le Duigou A, Davies P, Bruzaud S. Natural degradation and biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in liquid and solid marine environments. J Polym Environ. 2015;23:493–505.

    CAS  Google Scholar 

  • 108.

    Imam SH, Gordon SH, Shogren RL, Tosteson TR, Govind NS, Greene RV. Degradation of starch-poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol. 1999;65:431–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 109.

    Suzuki M, Tachibana Y, Kazahaya J, Takizawa R, Muroi F, Kasuya K. Difference in environmental degradability between poly(ethylene succinate) and poly(3-hydroxybutyrate). J Polym Res. 2017;24:217. https://doi.org/10.1007/s10965-017-1383-4.

    CAS  Article  Google Scholar 

  • 110.

    Dilkes-Hoffman LS, Lant PA, Laycock B, Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: a meta-study. Mar Pollut Bull. 2019;142:15–24.

    CAS  PubMed  Google Scholar 

  • 111.

    Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47:7137–46.

    CAS  PubMed  Google Scholar 

  • 112.

    Morohoshi T, Ogata K, Okura T, Sato S. Molecular characterization of the bacterial community in biofilms for degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films in seawater. Microbes Environ. 2018;33:19–25.

    PubMed  PubMed Central  Google Scholar 

  • 113.

    Pinnell LJ, Turner JW. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front Microbiol. 2019;10:1252. https://doi.org/10.3389/fmicb.2019.01252.

    Article  PubMed  PubMed Central  Google Scholar 

  • 114.

    Zadjelovic V, Chhun A, Quareshy M, Silvano E, Hernandez-Fernaud JR, Aguilo-Ferretjans MM, et al. Beyond oil degradation: enzymatic potential of Alcanivorax to degrade natural and synthetic polyesters. Environ Microbiol. 2020;22:1356–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 115.

    Kita K, Ishimaru K, Teraoka M, Yanase H, Kato N. Properties of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122. Appl Environ Microbiol. 1995;61:1727–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 116.

    Mergaert J, Wouters A, Anderson C, Swings J. In-situ biodegradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in natural-waters. Can J Microbiol. 1995;41:154–9.

    CAS  PubMed  Google Scholar 

  • 117.

    Kato C, Honma A, Sato S, Okura T, Fukuda R, Nogi Y. Poly 3-hydroxybutyrate-co-3-hydroxyhexanoate films can be degraded by the deep-sea microbes at high pressure and low temperature conditions. High Press Res. 2019;39:248–57.

    CAS  Google Scholar 

  • 118.

    Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stabil. 2010;95:2350–9.

    CAS  Google Scholar 

  • 119.

    Ma WT, Lin JH, Chen HJ, Chen SY, Shaw GC. Identification and characterization of a novel class of extracellular poly(3-hydroxybutyrate) depolymerase from Bacillus sp Strain NRRL B-14911. Appl Environ Microbiol. 2011;77:7924–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 120.

    Kasuya K, Mitomo H, Nakahara M, Akiba A, Kudo T, Doi Y. Identification of a marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules. 2000;1:194–201.

    CAS  PubMed  Google Scholar 

  • 121.

    Ghanem NB, Mabrouk MES, Sabry SA, El-Badan DES. Degradation of polyesters by a novel marine Nocardiopsis aegyptia sp. nov.: Application of Plackett-Burman experimental design for the improvement of PHB depolymerase activity. J Gen Appl Microbiol. 2005;51:151–8.

    CAS  PubMed  Google Scholar 

  • 122.

    Leathers TD, Govind NS, Greene RV. Biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a tropical marine bacterium, Pseudoalteromonas sp. NRRL b-30083. J Polym Environ. 2000;8:119–24.

    CAS  Google Scholar 

  • 123.

    Uefuji M, Kasuya K, Doi Y. Enzymatic degradation of poly (R)-3-hydroxybutyrate: secretion and properties of PHB depolymerase from Pseudomonas stutzeri. Polym Degrad Stabil. 1997;58:275–81.

    CAS  Google Scholar 

  • 124.

    Sung CC, Tachibana Y, Suzuki M, Hsieh WC, Kasuya K. Identification of a poly(3-hydroxybutyrate)-degrading bacterium isolated from coastal seawater in Japan as Shewanella sp. Polym Degrad Stabil. 2016;129:268–74.

    CAS  Google Scholar 

  • 125.

    Mabrouk MM, Sabry SA. Degradation of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine Streptomyces sp. SNG9. Microbiol Res. 2001;156:323–35.

    CAS  PubMed  Google Scholar 

  • 126.

    Kita K, Mashiba S, Nagita M, Ishimaru K, Okamoto K, Yanase H, et al. Cloning of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122, and characterization of its gene product. BBA-Gene Struct Expr. 1997;1352:113–22.

    CAS  Google Scholar 

  • 127.

    Kasuya K, Takano T, Tezuka Y, Hsieh WC, Mitomo H, Doi Y. Cloning, expression and characterization of a poly(3-hydroxybutyrate) depolymerase from Marinobacter sp. NK-1. Int J Biol Macromol. 2003;33:221–6.

    CAS  PubMed  Google Scholar 

  • 128.

    Ohura T, Kasuya K, Doi Y. Cloning and characterization of the polyhydroxybutyrate depolymerase gene of Pseudomonas stutzeri and analysis of the function of substrate-binding domains. Appl Environ Microbiol. 1999;65:189–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 129.

    Hisano T, Kasuya K, Tezuka Y, Ishii N, Kobayashi T, Shiraki M, et al. The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. J Mol Biol. 2006;356:993–1004.

    CAS  PubMed  Google Scholar 

  • 130.

    Kasuya K, Inoue Y, Tanaka T, Akehata T, Iwata T, Fukui T, et al. Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM1609, isolated from freshwater. Appl Environ Microbiol. 1997;63:4844–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 131.

    Sung CC, Tachibana Y, Kasuya K. Characterization of a thermolabile poly(3-hydroxybutyrate) depolymerase from the marine bacterium Shewanella sp. JKCM-AJ-6,1α. Polym Degrad Stabil. 2016;129:212–21.

    CAS  Google Scholar 

  • 132.

    NOAA. Sea surface temperature (sst) contour charts. 2020. https://www.ospo.noaa.gov/Products/ocean/sst/contour/.

  • 133.

    Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol. 2013;19:1884–96.

    Google Scholar 

  • 134.

    Xue DW, Zhang XQ, Lu XL, Chen G, Chen ZH. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci. 2017;8:621. https://doi.org/10.3389/fpls.2017.00621.

    Article  PubMed  PubMed Central  Google Scholar 

  • 135.

    Yeats TH, Rose JKC. The formation and function of plant cuticles. Plant Physiol. 2013;163:5–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 136.

    Philippe G, Sørensen I, Jiao C, Sun X, Fei Z, Domozych DS, et al. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Curr Opin Plant Biol. 2020;55:11–20.

    CAS  PubMed  Google Scholar 

  • 137.

    Broder L, Tesi T, Salvado JA, Semiletov IP, Dudarev OV, Gustafsson O. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior. Biogeosciences. 2016;13:5003–19.

    Google Scholar 

  • 138.

    Broder L, Tesi T, Andersson A, Eglinton TI, Semiletov IP, Dudarev OV, et al. Historical records of organic matter supply and degradation status in the East Siberian Sea. Org Geochem. 2016;91:16–30.

    Google Scholar 

  • 139.

    Goni MA, Yunker MB, Macdonald RW, Eglinton TI. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Mar Chem. 2000;71:23–51.

    CAS  Google Scholar 

  • 140.

    Prahl FG, Ertel JR, Goni MA, Sparrow MA, Eversmeyer B. Terrestrial organic-carbon contributions to sediments on the Washington margin. Geochim Cosmochim Acta. 1994;58:3035–48.

    CAS  Google Scholar 

  • 141.

    Kaal J, Serrano O, Cortizas AM, Baldock JA, Lavery PS. Millennial-scale changes in the molecular composition of Posidonia australis seagrass deposits: Implications for Blue Carbon sequestration. Org Geochem. 2019;137:103898. https://doi.org/10.1016/j.orggeochem.2019.07.007.

    CAS  Article  Google Scholar 

  • 142.

    Moran KL, Bjorndal KA. Simulated green turtle grazing affects nutrient composition of the seagrass Thalassia testudinum. Mar Biol. 2007;150:1083–92.

    CAS  Google Scholar 

  • 143.

    Olsen JL, Rouze P, Verhelst B, Lin YC, Bayer T, Collen J, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature. 2016;530:331–5.

    CAS  PubMed  Google Scholar 

  • 144.

    Sugiura H, Kawasaki Y, Suzuki T, Maegawa M. The structural and histochemical analyses and chemical characters of the cuticle and epidermal walls of cotyledon in ungerminated seeds of Zostera marina L. Fish Sci. 2009;75:369–77.

    CAS  Google Scholar 

  • 145.

    Lu B, Wang GX, Huang D, Ren ZL, Wang XW, Zhen ZC, et al. Comparison of PCL degradation in different aquatic environments: effects of bacteria and inorganic salts. Polym Degrad Stabil. 2018;150:133–9.

    CAS  Google Scholar 

  • 146.

    Molitor R, Bollinger A, Kubicki S, Loeschcke A, Jaeger KE, Thies S. Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species. Microb Biotechnol. 2020;13:274–84.

    CAS  PubMed  Google Scholar 

  • 147.

    Suzuki M, Tachibana Y, Oba K, Takizawa R, Kasuya K. Microbial degradation of poly(ε-caprolactone) in a coastal environment. Polym Degrad Stabil. 2018;149:1–8.

    CAS  Google Scholar 

  • 148.

    Almeida EL, AFC Rincon, Jackson SA, ADW Dobson. In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14. Front Microbiol. 2019;10:2187. https://doi.org/10.3389/fmicb.2019.02187.

    Article  PubMed  Google Scholar 

  • 149.

    Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2011;11:33–41.

    Google Scholar 

  • 150.

    Kovacic F, Babic N, Krauss U, Jaeger K. Classification of lipolytic enzymes from bacteria. In: Handbook of hydrocarbon and lipid microbiology. Cham: Springer; 2019;24. https://doi.org/10.1007/978-3-319-39782-5_39-1.

  • 151.

    Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes: classification and properties. Biochem J. 1999;343:177–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 152.

    Nikolaivits E, Kanelli M, Dimarogona M, Topakas E. A middle-aged enzyme still in its prime: recent advances in the field of cutinases. Catalysts. 2018;8:612. https://doi.org/10.3390/catal8120612.

    CAS  Article  Google Scholar 

  • 153.

    Chen S, Su LQ, Chen J, Wu J. Cutinase: characteristics, preparation, and application. Biotechnol Adv. 2013;31:1754–67.

    CAS  PubMed  Google Scholar 

  • 154.

    Chen S, Tong X, Woodard RW, Du GC, Wu J, Chen J. Identification and characterization of bacterial cutinase. J Biol Chem. 2008;283:25854–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 155.

    Reis P, Holmberg K, Watzke H, Leser ME, Miller R. Lipases at interfaces: a review. Adv Colloid Interfac. 2009;147:237–50.

    Google Scholar 

  • 156.

    Zumstein MT, Rechsteiner D, Roduner N, Perz V, Ribitsch D, Guebitz GM, et al. Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environ Sci Technol. 2017;51:7476–85.

    CAS  PubMed  Google Scholar 

  • 157.

    Shi K, Jing J, Song L, Su TT, Wang ZY. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. Int J Biol Macromol. 2020;144:183–9.

    CAS  PubMed  Google Scholar 

  • 158.

    Trodler P, Pleiss J. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Struct Biol. 2008;8:9. https://doi.org/10.1186/1472-6807-8-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 159.

    Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu XH, et al. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromolecules. 2016;17:2027–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 160.

    Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol. 2018;84:e02773–17. https://doi.org/10.1128/AEM.02773-17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 161.

    Bollinger A, Thies S, Knieps-Grunhagen E, Gertzen C, Kobus S, Hoppner A, et al. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri – Structural and functional insights. Front Microbiol. 2020;11:114. https://doi.org/110.3389/fmicb.2020.00114.

    PubMed  PubMed Central  Google Scholar 

  • 162.

    Shinomiya M, Iwata T, Kasuya K, Doi Y. Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiol Lett. 1997;154:89–94.

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Assessing the effect of wind farms in fauna with a mathematical model