in

Biodiversity increases ecosystem functions despite multiple stressors on coral reefs

  • 1.

    Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371, 20150267 (2016).

  • 2.

    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

  • 3.

    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

  • 4.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

  • 5.

    Cardinale, B. J., Ives, A. R. & Inchausti, P. Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104, 437–450 (2004).

    • Article
    • Google Scholar
  • 6.

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

  • 7.

    Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. R. Soc. B 285, 20180038 (2018).

  • 8.

    Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).

    • Article
    • Google Scholar
  • 9.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

  • 10.

    Clarke, D. A., York, P. H., Rasheed, M. A. & Northfield, T. D. Does biodiversity–ecosystem function literature neglect tropical ecosystems? Trends Ecol. Evol. 32, 320–323 (2017).

  • 11.

    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    • Article
    • Google Scholar
  • 12.

    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).

  • 13.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

  • 14.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

  • 15.

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 164–1168 (2010).

  • 16.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

  • 17.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  • 18.

    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    • Article
    • Google Scholar
  • 19.

    Towns, D. R., Atkinson, I. A. E. & Daugherty, C. H. Have the harmful effects of introduced rats on islands been exaggerated? Biol. Invasions 8, 863–891 (2006).

    • Article
    • Google Scholar
  • 20.

    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).

  • 21.

    Graham, N. A. J. & McClanahan, T. R. The last call for marine wilderness? BioScience 63, 397–402 (2013).

    • Article
    • Google Scholar
  • 22.

    Maire, E. et al. How accessible are coral reefs to people? A global assessment based on travel time. Ecol. Lett. 19, 351–360 (2016).

  • 23.

    Head, C. E. I. et al. Coral bleaching impacts from back-to-back 2015–2016 thermal anomalies in the remote central Indian Ocean. Coral Reefs 38, 605–618 (2019).

    • Article
    • Google Scholar
  • 24.

    Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).

    • Article
    • Google Scholar
  • 25.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    • Article
    • Google Scholar
  • 26.

    Allgeier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proc. Natl Acad. Sci. USA 112, E2640–E2647 (2015).

  • 27.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    • Article
    • Google Scholar
  • 28.

    Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2019).

    • Google Scholar
  • 29.

    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).

    • Article
    • Google Scholar
  • 30.

    Mora, C., Danovaro, R. & Loreau, M. Alternative hypotheses to explain why biodiversity–ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments. Sci. Rep. 4, 5427 (2014).

  • 31.

    Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).

  • 32.

    Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).

  • 33.

    Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).

    • Article
    • Google Scholar
  • 34.

    Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).

  • 35.

    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

  • 36.

    Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).

  • 37.

    Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).

    • Article
    • Google Scholar
  • 38.

    Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob. Change Biol. 12, 2220–2234 (2006).

    • Article
    • Google Scholar
  • 39.

    Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).

    • Article
    • Google Scholar
  • 40.

    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).

  • 41.

    Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).

    • Article
    • Google Scholar
  • 42.

    Gust, N., Choat, J. & Ackerman, J. Demographic plasticity in tropical reef fishes. Mar. Biol. 140, 1039–1051 (2002).

    • Article
    • Google Scholar
  • 43.

    Clifton, K. Asynchronous food availability on neighboring Caribbean coral reefs determines seasonal patterns of growth and reproduction for the herbivorous parrotfish Scarus iserti. Mar. Ecol. Prog. Ser. 116, 39–46 (1995).

    • Article
    • Google Scholar
  • 44.

    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).

  • 45.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  • 46.

    Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 232–261 (2012).

  • 47.

    Sheppard, C. R. C. et al. Coral bleaching and mortality in the Chagos Archipelago. Atoll Res. Bull. 613, 1–26 (2017).

    • Article
    • Google Scholar
  • 48.

    Polunin, N. V. C. & Roberts, C. M. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. Mar. Ecol. Prog. Ser. 100, 167–176 (1993).

    • Article
    • Google Scholar
  • 49.

    Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151, 1069–1076 (2007).

    • Article
    • Google Scholar
  • 50.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    • Article
    • Google Scholar
  • 51.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    • Article
    • Google Scholar
  • 52.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.19 http://chao.stat.nthu.edu.tw/blog/software-download/ (2019).

  • 53.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

  • 54.

    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    • Google Scholar
  • 55.

    Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987).

  • 56.

    Froese, R. & Pauly, D. FishBase (2018); www.fishbase.org

  • 57.

    D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).

  • 58.

    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2017).

    • Article
    • Google Scholar
  • 59.

    Yeager, L. A., Deith, M. C. M., McPherson, J. M., Williams, I. D. & Baum, J. K. Scale dependence of environmental controls on the functional diversity of coral reef fish communities. Glob. Ecol. Biogeogr. 26, 1177–1189 (2017).

    • Article
    • Google Scholar
  • 60.

    Hobson, E. S. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish Bull. 72, 915–1031 (1974).

    • Google Scholar
  • 61.

    Gajdzik, L., Parmentier, E., Sturaro, N. & Frédérich, B. Trophic specializations of damselfishes are tightly associated with reef habitats and social behaviours. Mar. Biol. 163, 249 (2016).

    • Article
    • Google Scholar
  • 62.

    Alwany, M. Distribution and feeding ecology of the angelfishes (Pomacanthidae) in Shalateen region, Red Sea, Egypt. Egypt. J. Aquat. Biol. Fish. 13, 79–91 (2009).

    • Article
    • Google Scholar
  • 63.

    Depczynski, M., Fulton, C. J., Marnane, M. J. & Bellwood, D. R. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153, 111–120 (2007).

  • 64.

    Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).

    • Article
    • Google Scholar
  • 65.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  • 66.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn (Sage, 2019).

  • 67.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: linear and nonlinear mixed effects models. R package version 3.1-141 (2019).

  • 68.

    Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    • Article
    • Google Scholar
  • 69.

    Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    • Google Scholar
  • 70.

    Epskcamp, S. semPlot: unified visualizations of structural equation models. Struct. Equ. Model. 22, 474–483 (2015).

    • Article
    • Google Scholar
  • 71.

    Hu, L. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1–55 (1999).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders