in

Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies

  • 1.

    Moloo S. K., Asonganyi T. & Jenni L. Cyclical development of Trypanosoma brucei gambiense from cattle and goats in Glossina. [Internet]. Acta Tropica. Elsevier Science Available, https://hdl.handle.net/10568/28000 (1986).

  • 2.

    Dukes, P., Kaukas, A., Hudson, K. M., Asonganyi, T. & Gashumba, J. K. A new method for isolating trypanosoma brucei gambiense from sleeping sickness patients. Trans R Soc Trop Med Hyg. 83, 636–639, https://doi.org/10.1016/0035-9203(89)90379-9 (1989).

  • 3.

    Maudlin, I. & Welbum, S. C. Maturation of trypanosome infections in tsetse, a review. Exp Parasitol. 79, 202–205, https://doi.org/10.1006/expr.1994.1081 (1994).

  • 4.

    Omolo M. O. et al. Prospects for developing odour baits to control Glossina fuscipes spp., the major vector of human African trypanosomiasis. PLoS Negl Trop Dis. 3. https://doi.org/10.1371/journal.pntd.0000435 (2009).

  • 5.

    Farikou, O. et al. Tsetse fly blood meal modification and trypanosome identification in two sleeping sickness foci in the forest of southern Cameroon. Acta Trop. Elsevier B.V. 116, 81–88, https://doi.org/10.1016/j.actatropica.2010.06.002 (2010).

    • Article
    • Google Scholar
  • 6.

    Muturi C. N et al. Mithöfer KM, et al. Tracking the feeding patterns of tsetse flies (glossina genus) by analysis of bloodmeals using mitochondrial cytochromes genes. PLoS One. 6, https://doi.org/10.1371/journal.pone.0017284 (2011).

  • 7.

    Ford, J. The geographical distribution of Glossina. In: Mulligan, HW (ed) The African Trypanosomiases. London: George Allen and Unwin; pp. 274–297 (1970).

  • 8.

    Moloo, S. K. The distribution of Glossina species in Africa and their natural hosts. Int J Trop Insect Sci. Cambridge University Press 14, 511–527, https://doi.org/10.1017/S1742758400014211 (1993).

    • Article
    • Google Scholar
  • 9.

    FAO. Training manual for tsetse control personnel; Ecology and behaviour of tsetse. FAO. 1982;Volume 2. Available: ftp://ftp.fao.org/docrep/fao/009/p5444e/p5444e00.pdf

  • 10.

    Leak, S. Tsetse Biology and Ecology: Their Role in The Epidemiology and Control of Trypanosomiasis. (CABI, New York, NY, 1999).

    • Google Scholar
  • 11.

    Geiger, A. et al. Bacterial Diversity Associated with Populations of Glossina spp. from Cameroon and Distribution within the Campo Sleeping Sickness Focus. Microb Ecol. 62, 632–643, https://doi.org/10.1007/s00248-011-9830-y (2011).

    • Article
    • Google Scholar
  • 12.

    Maudlin, I., Kabayo, J. P., Flood, M. E. T. & Evans, D. A. Serum factors and the maturation of Trypanosoma congolense infections in Glossina morsitans. Zeitschrift für Parasitenkd Parasitol Res. 70, 11–19, https://doi.org/10.1007/BF00929570 (1984).

  • 13.

    Mihok, S., Olubayo, R. O., Darji, N. & Zweygarth, E. The influence of host blood on infection rates in Glossina morsitans sspp. infected with Trypanosoma congolense, T. brucei and T. simiae. Parasitology. 107, 41–48, https://doi.org/10.1017/S0031182000079385 (1993).

    • Article
    • Google Scholar
  • 14.

    Kent, R. J. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Molecular Ecology Resources. pp 4–18. https://doi.org/10.1111/j.1755-0998.2008.02469.x (2009).

  • 15.

    Matthee, C. A. & Davis, S. K. Molecular insights into the evolution of the family Bovidae: A nuclear DNA perspective. Mol Biol Evol. 18, 1220–1230, https://doi.org/10.1093/oxfordjournals.molbev.a003908 (2001).

  • 16.

    Vun, V. F., Mahani, M. C., Lakim, M., Ampeng, A. & Md-Zain, B. M. Phylogenetic relationships of leaf monkeys (Presbytis; Colobinae) based on cytochrome b and 12 S rRNA genes. Genet Mol Res. 10, 368–381, https://doi.org/10.4238/vol10-1gmr1048 (2011).

  • 17.

    Rosli, M. K. A. et al. Optimization of PCR conditions to amplify Cyt b, COI and 12 S rRNA gene fragments of Malayan gaur (Bos gaurus hubbacki) mtDNA. Genet Mol Res. 10, 2554–2568, https://doi.org/10.4238/2011.October.19.2 (2011).

  • 18.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci. 2, https://doi.org/10.1098/rsos.150088 (2015).

  • 19.

    Ushio, M. et al. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol Ecol Resour. 17, e63–e75, https://doi.org/10.1111/1755-0998.12690 (2017).

  • 20.

    Aksoy, S., Gibson, W. C. & Lehane, M. J. Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. Adv Parasitol. 53, 1–83, https://doi.org/10.1016/S0065-308x(03)53002-0 (2003).

    • Article
    • Google Scholar
  • 21.

    Weiss, B. L., Wang, J., Maltz, M. A., Wu, Y. & Aksoy, S. Trypanosome Infection Establishment in the Tsetse Fly Gut Is Influenced by Microbiome-Regulated Host Immune Barriers. PLoS Pathog. 9, https://doi.org/10.1371/journal.ppat.1003318 (2013).

  • 22.

    Geiger, A., Ponton, F. & Simo, G. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. ISME J. Nature Publishing Group 9, 1496–1507, https://doi.org/10.1038/ismej.2014.236 (2015).

    • Article
    • Google Scholar
  • 23.

    Weiss, B. & Aksoy, S. Microbiome influences on insect host vector competence. Trends in Parasitology, https://doi.org/10.1016/j.pt.2011.05.001 (2011).

  • 24.

    Wang, J., Wu, Y., Yang, G. & Aksoy, S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci. 106, 12133–12138, https://doi.org/10.1073/pnas.0901226106 (2009).

  • 25.

    Rio, R. V. M. et al. Mutualist-provisioned resources impact vector competency. MBio. 10, https://doi.org/10.1128/mBio.00018-19 (2019).

  • 26.

    Geiger, A. et al. Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol. 24, 102–109, https://doi.org/10.1093/molbev/msl135 (2007).

  • 27.

    Farikou, O. et al. Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes-An epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infect Genet Evol. 10, 115–121, https://doi.org/10.1016/j.meegid.2009.10.008 (2010).

    • Article
    • Google Scholar
  • 28.

    Alam, U. et al. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the Tsetse fly glossina morsitans. PLoS Pathog. 7, https://doi.org/10.1371/journal.ppat.1002415 (2011).

  • 29.

    Doudoumis, V. et al. Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep. Springer US 7, 1–13, https://doi.org/10.1038/s41598-017-04740-3 (2017).

  • 30.

    Weiss, B. L. et al. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog. 15, https://doi.org/10.1371/journal.ppat.1007470 (2019).

  • 31.

    Simo, G. et al. Tsetse fly host preference from sleeping sickness foci in Cameroon: Epidemiological implications. Infect Genet Evol. 8, 34–39, https://doi.org/10.1016/j.meegid.2007.09.005 (2008).

  • 32.

    Farikou, O. et al. Tsetse fly blood meal modification and trypanosome identification in two sleeping sickness foci in the forest of southern Cameroon. Acta Trop. 116, 81–88, https://doi.org/10.1016/j.actatropica.2010.06.002 (2010).

    • Article
    • Google Scholar
  • 33.

    Schneider, D. I. et al. Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Negl Trop Dis. 13, e0007340, https://doi.org/10.1371/journal.pntd.0007340 (2019).

  • 34.

    Aksoy, E. et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol. 80, 4301–4312, https://doi.org/10.1128/AEM.00079-14 (2014).

  • 35.

    Geiger, A. et al. First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina palpalis palpalis) midgut. Infect Genet Evol. 9, 1364–1370, https://doi.org/10.1016/j.meegid.2009.09.013 (2009).

    • Article
    • Google Scholar
  • 36.

    Lindh, J. M. & Lehane, M. J. The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts. Antonie van Leeuwenhoek, Int J Gen. Mol Microbiol. 99, 711–720, https://doi.org/10.1007/s10482-010-9546-x (2011).

    • Article
    • Google Scholar
  • 37.

    Illumina. 16 S Metagenomic Sequencing Library Preparation. Illumina.com. 1–28. Available, http://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (2013).

  • 38.

    Gaithuma, A. K. et al. A single test approach for accurate and sensitive detection and taxonomic characterization of Trypanosomes by comprehensive analysis of internal transcribed spacer 1 amplicons. PLoS Negl Trop Dis. Public Library of Science. 13, e0006842, https://doi.org/10.1371/journal.pntd.0006842 (2019).

  • 39.

    Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ. 6, e4925, https://doi.org/10.7717/peerj.4925 (2018).

  • 40.

    Camacho, C. et al. BLAST + : Architecture and applications. BMC Bioinformatics. 10, 1–9, https://doi.org/10.1186/1471-2105-10-421 (2009).

  • 41.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15. https://doi.org/10.1186/s13059-014-0550-8 (2014).

  • 42.

    Clausen, P. H. et al. Host preferences of tsetse (Diptera: Glossinidae) based on bloodmeal identifications. Med Vet Entomol. 12, 169–180, https://doi.org/10.1046/j.1365-2915.1998.00097.x (1998).

  • 43.

    Laohasinnarong, D. et al. Studies of trypanosomiasis in the Luangwa valley, north-eastern Zambia. Parasites and Vectors. 8, 497, https://doi.org/10.1186/s13071-015-1112-y (2015).

  • 44.

    Auty, H. et al. Trypanosome Diversity in Wildlife Species from the Serengeti and Luangwa Valley Ecosystems. PLoS Negl Trop Dis. 6, e1828, https://doi.org/10.1371/journal.pntd.0001828 (2012).

  • 45.

    Squarre, D. et al. Human African Trypanosomiasis in the Kafue National Park, Zambia. PLoS Negl Trop Dis. 10, e0004567, https://doi.org/10.1371/journal.pntd.0004567 (2016).

  • 46.

    Lisulo, M. et al. Determination of the prevalence of African trypanosome species in indigenous dogs of Mambwe district, eastern Zambia, by loop-mediated isothermal amplification. Parasites and Vectors. 7, https://doi.org/10.1186/1756-3305-7-19 (2014).

  • 47.

    Nash, T. A. M. Bats as a Source of Food for Glossina morsitans and G. tachinoides. Bull Entomol Res. 32, 249, https://doi.org/10.1017/s0007485300017181 (1941).

    • Article
    • Google Scholar
  • 48.

    Woo, P. T. & Hawkins, J. D. Trypanosomes and experimental trypanosomaisis in East African bats. Acta Trop. 32, 57–64. https://www.ncbi.nlm.nih.gov/pubmed/239552 (1975)

  • 49.

    Büscher, P. et al. Do Cryptic Reservoirs Threaten Gambiense-Sleeping Sickness Elimination? Trends in Parasitology. 197–207, https://doi.org/10.1016/j.pt.2017.11.008 (2018).

  • 50.

    Cordon-Obras, C et al. Molecular evidence of a Trypanosoma brucei gambiense sylvatic cycle in the human african trypanosomiasis foci of Equatorial Guinea. Front Microbiol. 6, https://doi.org/10.3389/fmicb.2015.00765 (2015).

  • 51.

    Dennis, J. W. et al. Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasites and Vectors. 7, 378, https://doi.org/10.1186/1756-3305-7-378 (2014).

    • Article
    • Google Scholar
  • 52.

    Kame-Ngasse, G. I. et al. Prevalence of symbionts and trypanosome infections in tsetse flies of two villages of the “faro and Déo” division of the Adamawa region of Cameroon 06 Biological Sciences 0604 Genetics. BMC Microbiol. 18, https://doi.org/10.1186/s12866-018-1286-5 (2018).

  • 53.

    Malele, I. et al. Bacterial diversity obtained by culturable approaches in the gut of Glossina pallidipes population from a non sleeping sickness focus in Tanzania: preliminary results. BMC Microbiol. 18, 164, https://doi.org/10.1186/s12866-018-1288-3 (2018).

  • 54.

    Griffith, B. C. et al. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence. BMC Microbiol. BioMed Central 18, 146, https://doi.org/10.1186/s12866-018-1284-7 (2018).

  • 55.

    Muturi, E. J., Dunlap, C., Ramirez, J. L., Rooney, A. P. & Kim, C. H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 95, https://doi.org/10.1093/femsec/fiy213 (2019).


  • Source: Ecology - nature.com

    Fusion researchers endorse push for pilot power plant in US

    Staring into the vortex