in

Breeding for low cadmium barley by introgression of a Sukkula-like transposable element

  • 1.

    Bertin, G. & Averbeck, D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88, 1549–1559 (2006).

    CAS  Article  Google Scholar 

  • 2.

    Nawrot, T. et al. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol. 7, 119–126 (2006).

    CAS  Article  Google Scholar 

  • 3.

    Horiguchi, H. et al. Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch. Toxicol. 68, 632–636 (1994).

    CAS  Article  Google Scholar 

  • 4.

    Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750–759 (2015).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Clemens, S. & Ma, J. F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 67, 489–512 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Wang, W., Yamaji, N. & Ma, J. F. Molecular Mechanism of Cadmium Accumulation in Rice (eds Himeno, S. & Aoshima, K.) 115–124 (Springer, 2019).

  • 7.

    Sasaki, A., Yamaji, N., Yokosho, K. & Ma, J. F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24, 2155–2167 (2012).

    CAS  Article  Google Scholar 

  • 8.

    Yan, H. et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat. Commun. 10, 2562 (2019).

    ADS  Article  Google Scholar 

  • 9.

    Ueno, D. et al. Gene limiting cadmium accumulation in rice. Proc. Natl Acad. Sci. USA 107, 16500–16505 (2010).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Yamaji, N., Xia, J. X., Mitani-Ueno, N., Yokosho, K. & Ma, J. F. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol. 162, 927–939 (2013).

    CAS  Article  Google Scholar 

  • 11.

    Uraguchi, S. et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc. Natl Acad. Sci. USA 108, 20959–20964 (2011).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Hao, X. et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front. Plant Sci. 9, 476 (2018).

    ADS  Article  Google Scholar 

  • 13.

    Luo, J. S. et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 9, 645 (2018).

    ADS  Article  Google Scholar 

  • 14.

    Schulte, D. et al. The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 149, 142–147 (2009).

    CAS  Article  Google Scholar 

  • 15.

    Codex General Standards for Contaminants and Toxins in Food and Feed (Codex Stan 193-1995) (Codex Alimentarius, FAO & WHO, 2019).

  • 16.

    Chen, F. et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67, 2082–2088 (2007).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Wu, D., Sato, K. & Ma, J. F. Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. 208, 817–829 (2015).

    CAS  Article  Google Scholar 

  • 18.

    Saisho, D., Myoraku, E., Kawasaki, S., Sato, K. & Takeda, K. Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety ‘Haruna Nijo’. Breed. Sci. 57, 29–38 (2007).

    Article  Google Scholar 

  • 19.

    Huang, C. F., Yamaji, N., Chen, Z. & Ma, J. F. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 69, 857–867 (2012).

    CAS  Article  Google Scholar 

  • 20.

    Yan, J. et al. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ. 39, 1941–1954 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Shirasu, K., Schulman, A. H., Lahaye, T. & Schulze-Lefert, P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915 (2000).

    CAS  Article  Google Scholar 

  • 22.

    Kartal-Alacam, G., Yilmaz, S., Marakli, S. & Gozukirmizi, N. Sukkula retrotransposon insertion polymorphisms in barley. Russ. J. Plant Physiol. 61, 828–833 (2014).

    CAS  Article  Google Scholar 

  • 23.

    Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    CAS  Article  Google Scholar 

  • 24.

    Pereira, J. F. & Ryan, P. R. The role of transposable elements in the evolution of aluminium resistance in plants. J. Exp. Bot. 70, 41–54 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Zhang, L. et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 10, 1494 (2019).

    ADS  Article  Google Scholar 

  • 26.

    Fujii, M. et al. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat. Commun. 3, 713 (2012).

    ADS  Article  Google Scholar 

  • 27.

    Kashino-Fujii, M. et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions. Plant Physiol. 178, 716–727 (2018).

    CAS  Article  Google Scholar 

  • 28.

    Laxa, M. et al. The 5′UTR intron of Arabidopsis GGT1 aminotransferase enhances promoter activity by recruiting RNA polymerase II. Plant Physiol. 172, 313–327 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Yokosho, K., Yamaji, N., Fujii-Kashino, M. & Ma, J. F. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol. 172, 2327–2336 (2016).

    CAS  Article  Google Scholar 

  • 30.

    Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Negi, P., Rai, A. N. & Suprasanna, P. Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Front. Plant Sci. 7, 1448 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Pourkheirandish, M. et al. Evolution of the grain dispersal system in barley. Cell 162, 527–539 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Sasaki, A., Yamaji, N. & Ma, J. F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 65, 6013–6021 (2014).

    CAS  Article  Google Scholar 

  • 34.

    Cai, H., Huang, S., Che, J., Yamaji, N. & Ma, J. F. The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J. Exp. Bot. 70, 2717–2725 (2019).

    CAS  Article  Google Scholar 

  • 35.

    Close, T. J. et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genom. 10, 582 (2009).

    Article  Google Scholar 

  • 36.

    Wang, S., Basten, C. J. & Zeng, Z. B. Windows QTL Cartographer 2.5 (Department of Statistics, North Carolina State University, 2012); http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • 37.

    Fuse, T., Sasaki, T. & Yano, M. Ti-plasmid vectors useful for functional analysis of rice genes. Plant Biotech. 18, 219–222 (2001).

    CAS  Article  Google Scholar 

  • 38.

    Tsutsui, T., Yamaji, N. & Ma, J. F. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 156, 925–931 (2011).

    CAS  Article  Google Scholar 

  • 39.

    Chen, S. et al. A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol. Plant Pathol. 7, 417–427 (2006).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Hiei, Y., Ishida, Y., Kasaoka, K. & Komari, T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 87, 233–243 (2006).

    Article  Google Scholar 

  • 41.

    Hiei, Y. & Komari, T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 85, 271–283 (2006).

    CAS  Article  Google Scholar 

  • 42.

    Hensel, G., Valkov, V., Middlefell-Williams, J. & Kumlehn, J. Efficient generation of transgenic barley: the way forward to modulate plant–microbe interactions. J. Plant Physiol. 165, 71–82 (2008).

    CAS  Article  Google Scholar 

  • 43.

    Miki, D. & Shimamoto, K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45, 490–495 (2004).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Assessing the value of battery energy storage in future power grids

    Spatial patterns of microbial communities across surface waters of the Great Barrier Reef