in

Bubble-mediated transport of benthic microorganisms into the water column: Identification of methanotrophs and implication of seepage intensity on transport efficiency

  • 1.

    Yamahara, K. M., Layton, B. A., Santoro, A. E. & Boehm, A. B. Beach Sands along the California Coast Are Diffuse Sources of Fecal Bacteria to Coastal Waters. Environ. Sci. Technol. 41, 4515–4521 (2007).

  • 2.

    Shibata, T., Solo-Gabriele, H. M., Fleming, L. E. & Elmir, S. Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Res. 38, 3119–3131 (2004).

  • 3.

    Russell, T. L., Yamahara, K. M. & Boehm, A. B. Mobilization and Transport of Naturally Occurring Enterococci in Beach Sands Subject to Transient Infiltration of Seawater. Environ. Sci. Technol. 46, 5988–5996 (2012).

  • 4.

    Ferguson, D. M., Moore, D. F., Getrich, M. A. & Zhowandai, M. H. Enumeration and speciation of enterococci found in marine and intertidal sediments and coastal water in southern California. J. Appl. Microbiol. 99, 598–608 (2005).

  • 5.

    Orvain, F., Hir, P. L. & Sauriau, P. A model of fluff layer erosion and subsequent bed erosion in the presence of the bioturbator, Hydrobia ulvae. J. Mar. Res. 61, 821–849 (2003).

    • Article
    • Google Scholar
  • 6.

    Jamieson, R. C., Joy, D. M., Lee, H., Kostaschuk, R. & Gordon, R. J. Resuspension of Sediment-Associated Escherichia coli in a Natural Stream. J. Environ. Qual. 34, 581–589 (2005).

  • 7.

    Schmale, O. et al. Bubble Transport Mechanism: Indications for a gas bubble-mediated inoculation of benthic methanotrophs into the water column. Cont. Shelf Res. 103, 70–78 (2015).

    • Article
    • Google Scholar
  • 8.

    Bertagnolli, A. et al. Bacterial diversity in the bottom boundary layer of the inner continental shelf of Oregon, USA. Aquat. Microb. Ecol. 64, 15–25 (2011).

    • Article
    • Google Scholar
  • 9.

    Stevens, H., Brinkhoff, T. & Simon, M. Composition of free-living, aggregate-associated and sediment surface-associated bacterial communities in the German Wadden Sea. Aquat. Microb. Ecol. 38, 15–30 (2005).

    • Article
    • Google Scholar
  • 10.

    Ziervogel, K. & Arnosti, C. Enzyme activities in the Delaware Estuary affected by elevated suspended sediment load. Estuar. Coast. Shelf Sci. 84, 253–258 (2009).

  • 11.

    Garstecki, T., Wickham, S. A. & Arndt, H. Effects of Experimental Sediment Resuspension on a Coastal Planktonic Microbial Food Web. Estuar. Coast. Shelf Sci. 55, 751–762 (2002).

  • 12.

    Shimeta, J., Amos, C. L., Beaulieu, S. E. & Ashiru, O. M. Sequential resuspension of protists by accelerating tidal flow: Implications for community structure in the benthic boundary layer. Limnol. Oceanogr. 47, 1152–1164 (2002).

  • 13.

    Guizien, K. et al. Microorganism dynamics during a rising tide: Disentangling effects of resuspension and mixing with offshore waters above an intertidal mudflat. J. Mar. Syst. 129, 178–188 (2014).

    • Article
    • Google Scholar
  • 14.

    Forehead, H., Thomson, P. & Kendrick, G. A. Shifts in composition of microbial communities of subtidal sandy sediments maximise retention of nutrients. FEMS Microbiol. Ecol. 83, 279–298 (2013).

  • 15.

    Kvenvolden, K. A. & Rogers, B. W. Gaia’s breath – Global methane exhalations. Mar. Pet. Geol. 22, 579–590 (2005).

  • 16.

    Weber, T., Wiseman, N. A. & Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun. 10, 1–10 (2019).

  • 17.

    Reeburgh, W. S. Oceanic Methane Biogeochemistry. Chem. Rev. 107, 486–513 (2007).

  • 18.

    Leifer, I. & Patro, R. K. The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study. Cont. Shelf Res. 22, 2409–2428 (2002).

  • 19.

    Naudts, L. et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive- versus bubble-released methane. Mar. Geol. 272, 233–250 (2010).

  • 20.

    Wan, J. & Wilson, J. L. Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media. Water Resour. Res. 30, 11–23 (1994).

  • 21.

    Leifer, I. & Judd, A. G. Oceanic methane layers: the hydrocarbon seep bubble deposition hypothesis. Terra Nov. 14, 417–424 (2002).

  • 22.

    Blanchard, D. C. Bubble Scavenging and the Water-to-Air Transfer of Organic Material in the Sea. In Applied Chemistry at Protein Interfaces 360–387 (1975).

  • 23.

    Leifer, I., de Leeuw, G. & Cohen, L. H. Secondary bubble production from breaking waves: The bubble burst mechanism. Geophys. Res. Lett. 27, 4077–4080 (2000).

  • 24.

    Wan, J., Wilson, J. L. & Kieft, T. L. Influence of the gas-water interface on transport of microorganisms through unsaturated porous media. Appl. Environ. Microbiol. 60, 509–516 (1994).

  • 25.

    McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E. & Wüest, A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. 111, C09007 (2006).

  • 26.

    Steinle, L. et al. Water column methanotrophy controlled by a rapid oceanographic switch. Nat. Geosci. 8, 378–382 (2015).

  • 27.

    Schneider von Deimling, J. et al. Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont. Shelf Res. 31, 867–878 (2011).

  • 28.

    Nauw, J., de Haas, H. & Rehder, G. A review of oceanographic and meteorological controls on the North Sea circulation and hydrodynamics with a view to the fate of North Sea methane from well site 22/4b and other seabed sources. Mar. Pet. Geol. 68, 861–882 (2015).

  • 29.

    Steinle, L. et al. Linked sediment and water-column methanotrophy at a man-made gas blowout in the North Sea: Implications for methane budgeting in seasonally stratified shallow seas. Limnol. Oceanogr. 61, S367–S386 (2016).

  • 30.

    Schmale, O. et al. Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea). Biogeosciences 9, 4969–4977 (2012).

  • 31.

    Valentine, D. L. Emerging Topics in Marine Methane Biogeochemistry. Ann. Rev. Mar. Sci. 3, 147–171 (2011).

    • Article
    • Google Scholar
  • 32.

    Saunois, M. et al. The global methane budget 2000-2012. Earth Syst. Sci. Data 8 (2016).

  • 33.

    Redmond, M. C., Valentine, D. L. & Sessions, A. L. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing. Appl. Environ. Microbiol. 76, 6412–6422 (2010).

  • 34.

    Steinle, L. et al. Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters. Biogeosciences 14, 1631–1645 (2017).

  • 35.

    Schubert, C. J. et al. Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochemistry, Geophys. Geosystems 7 (2006).

  • 36.

    Durisch-Kaiser, E., Klauser, L., Wehrli, B. & Schubert, C. Evidence of Intense Archaeal and Bacterial Methanotrophic Activity in the Black Sea Water Column. Appl. Environ. Microbiol. 71, 8099–8106 (2005).

  • 37.

    Kessler, J. D. et al. A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico. Science (80). 331, 312–315 (2011).

  • 38.

    de Angelis, M. A., Lilley, M. D. & Baross, J. A. Methane oxidation in deep-sea hydrothermal plumes of the endeavour segment of the Juan de Fuca Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 40, 1169–1186 (1993).

  • 39.

    Law, C. S. et al. Geological, hydrodynamic and biogeochemical variability of a New Zealand deep-water methane cold seep during an integrated three-year time-series study. Mar. Geol. 272, 189–208 (2010).

  • 40.

    Schubert, C. J. et al. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ. Microbiol. 8, 1844–1856 (2006).

  • 41.

    Leifer, I. A Synthesis Review of Emissions and Fates for the Coal Oil Point Marine Hydrocarbon Seep Field and California Marine Seepage. Geofluids 2019, 1–48 (2019).

    • Article
    • Google Scholar
  • 42.

    Leifer, I. & Boles, J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment. Mar. Pet. Geol. 22, 551–568 (2005).

    • Article
    • Google Scholar
  • 43.

    Vazquez, A., Leifer, I. & Sánchez, R. M. Consideration of the dynamic forces during bubble growth in a capillary tube. Chem. Eng. Sci. 65, 4046–4054 (2010).

  • 44.

    Leifer, I. & Culling, D. Formation of seep bubble plumes in the Coal Oil Point seep field. Geo-Marine Lett. 30, 339–353 (2010).

  • 45.

    Leifer, I. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil Point seep field. J. Geophys. Res. 115, C11014 (2010).

  • 46.

    Treude, T. & Ziebis, W. Methane oxidation in permeable sediments at hydrocarbon seeps in the Santa Barbara Channel, California. Biogeosciences 7, 3095–3108 (2010).

  • 47.

    Haeckel, M., Boudreau, B. P. & Wallmann, K. Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation. Geochim. Cosmochim. Acta 71, 5135–5154 (2007).

  • 48.

    Dando, P. R. et al. Hydrothermal studies in the Aegean sea. Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 25, 1–8 (2000).

  • 49.

    Kersten, M., Leipe, T. & Tauber, F. Storm Disturbance of Sediment Contaminants at a Hot-Spot in the Baltic Sea Assessed by 234Th Radionuclide Tracer Profiles. Environ. Sci. Technol. 39, 984–990 (2005).

  • 50.

    Williams, J. J. & Rose, C. P. Measured and predicted rates of sediment transport in storm conditions. Mar. Geol. 179, 121–133 (2001).

  • 51.

    Boudreau, B. P. et al. Bubble growth and rise in soft sediments. Geology 33, 517 (2005).

  • 52.

    Algar, C. K., Boudreau, B. P. & Barry, M. A. Release of multiple bubbles from cohesive sediments. Geophys. Res. Lett. 38, 2–5 (2011).

    • Article
    • Google Scholar
  • 53.

    Römer, M., Riedel, M., Scherwath, M., Heesemann, M. & Spence, G. D. Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Geochemistry, Geophys. Geosystems 17, 3797–3814 (2016).

  • 54.

    Schneider von Deimling, J., Greinert, J., Chapman, N. R., Rabbel, W. & Linke, P. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents. Limnol. Oceanogr. Methods 8, 155–171 (2010).

    • Article
    • Google Scholar
  • 55.

    Aben, R. C. H. et al. Cross continental increase in methane ebullition under climate change. Nat. Commun. 8, 1682 (2017).

  • 56.

    Hu, W. et al. Concentration and viability of airborne bacteria over the Kuroshio extension region in the northwestern pacific ocean: Data from three cruises. J. Geophys. Res. Atmos. 122(12), 892–12,905 (2017).

    • Google Scholar
  • 57.

    Wan, J. & Wilson, J. L. Colloid transport in unsaturated porous media. Water Resour. Res. 30, 857–864 (1994).

  • 58.

    Schäfer, A., Hauke, H. & Zehnder, A. J. B. Bacterial Accumulation at the Air – Water Interface. Environ. Sci. Technol. 32, 3704–3712 (1998).

  • 59.

    Malhotra, R., Dhawan, B., Garg, B., Shankar, V. & Nag, T. A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: An In vitro study. Indian J. Orthop. 53, 148 (2019).

  • 60.

    Stenstrom, T. A. Bacterial Hydrophobicity, an Overall Parameter for the Measurement of Adhesion. 55, 142–147 (1989).

  • 61.

    Jang, H., Rusconi, R. & Stocker, R. Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution. npj Biofilms Microbiomes 3, 1–6 (2017).

    • Article
    • Google Scholar
  • 62.

    Michaud, J. M. et al. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nat. Commun. 9 (2018).

  • 63.

    Deutzmann, J. S., Hoppert, M. & Schink, B. Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov. Syst. Appl. Microbiol. 37, 165–169 (2014).

  • 64.

    Kalyuzhnaya, M. G. et al. Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus. Methylomicrobium. Int. J. Syst. Evol. Microbiol. 58, 591–596 (2008).

  • 65.

    Tavormina, P. L., Ussler, W. & Orphan, V. J. Planktonic and Sediment-Associated Aerobic Methanotrophs in Two Seep Systems along the North American Margin. Appl. Environ. Microbiol. 74, 3985–3995 (2008).

  • 66.

    Clift, R., Grace, J. R. & Weber, M. E. Bubbles, Drops, and Particles. Academic Press (1978).

  • 67.

    Heintz, M. B., Mau, S. & Valentine, D. L. Physical control on methanotrophic potential in waters of the Santa Monica Basin, Southern California. Limnol. Oceanogr. 57, 420–432 (2012).

  • 68.

    Hickey, B. M. Circulation over the Santa Monica-San Pedro Basin and Shelf. Prog. Oceanogr. 30, 37–115 (1992).

  • 69.

    Winant, C. D., Dever, E. P. & Hendershott, M. C. Characteristic patterns of shelf circulation at the boundary between central and southern California. J. Geophys. Res. Ocean. 108, n/a–n/a (2003).

    • Article
    • Google Scholar
  • 70.

    Messina, E. et al. Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea. Mar. Genomics 25, 11–13 (2016).

    • Article
    • Google Scholar
  • 71.

    Wang, W., Wang, L. & Shao, Z. Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Appl. Environ. Microbiol. 84, 1–15 (2018).

    • Google Scholar
  • 72.

    Hazen, T. C., Prince, R. C. & Mahmoudi, N. Marine Oil Biodegradation. Environ. Sci. Technol. 50, 2121–2129 (2016).

  • 73.

    Kleindienst, S. et al. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J. 10, 400–415 (2015).

  • 74.

    Gutierrez, T., Berry, D., Teske, A. & Aitken, M. Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill. Microorganisms 4, 24 (2016).

  • 75.

    Lai, Q., Li, W., Wang, B., Yu, Z. & Shao, Z. Complete genome sequence of the pyrene-degrading bacterium Cycloclasticus sp. strain P1. J. Bacteriol. 194, 6677–6677 (2012).

  • 76.

    Leifer, I., Clark, J. F. & Chen, R. F. Modifications of the local environment by natural marine hydrocarbon seeps. Geophys. Res. Lett. 27, 3711–3714 (2000).

  • 77.

    Hornafius, J. S., Quigley, D. & Luyendyk, B. P. The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. J. Geophys. Res. Ocean. 104, 20703–20711 (1999).

  • 78.

    Leifer, I., Kamerling, M. J., Luyendyk, B. P. & Wilson, D. S. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California. Geo-Marine Lett. 30, 331–338 (2010).

  • 79.

    Fischer, J. P. Oil and tar seeps, Santa Barbara basin, California. in California Offshore Gas, Oil and Tar Seeps 1–62 (California State Lands Commission, 1978).

  • 80.

    Olson, D. J. Surface and Subsurface Geology of the Santa Barbara-Goleta Metropolitan Area, Santa Barbara County, California. Masters Thesis (1982).

  • 81.

    Mau, S. et al. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California. Geophys. Res. Lett. 34, L22603 (2007).

  • 82.

    Kinnaman, F. S. et al. Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas. Geo-Marine Lett. 30, 355–365 (2010).

  • 83.

    Mau, S., Heintz, M. B., Kinnaman, F. S. & Valentine, D. L. Compositional variability and air-sea flux of ethane and propane in the plume of a large, marine seep field near Coal Oil Point. CA. Geo-Marine Lett. 30, 367–378 (2010).

  • 84.

    Mau, S., Heintz, M. B. & Valentine, D. L. Quantification of CH4 loss and transport in dissolved plumes of the Santa Barbara Channel, California. Cont. Shelf Res. 32, 110–120 (2012).

  • 85.

    Wilson, S. T. et al. An intercomparison of oceanic methane and nitrous oxide measurements. Biogeosciences 15, 5891–5907 (2018).

  • 86.

    Magen, C. et al. A simple headspace equilibration method for measuring dissolved methane. Limnol. Oceanogr. Methods 12, 637–650 (2014).

    • Article
    • Google Scholar
  • 87.

    Niemann, H. et al. Toxic effects of lab-grade butyl rubber stoppers on aerobic methane oxidation. Limnol. Oceanogr. Methods 13, 40–52 (2015).

  • 88.

    Bussmann, I., Matousu, A., Osudar, R. & Mau, S. Assessment of the radio 3H-CH4 tracer technique to measure aerobic methane oxidation in the water column. Limnol. Oceanogr. Methods 13, 312–327 (2015).

  • 89.

    Wiesenburg, D. A. & Guinasso, N. L. Equilibrium Solubilities of Methane, Carbon Monoxide, and Hydrogen in Water and Sea Water. J. Chem. Eng. Data 24, 356–360 (1979).

  • 90.

    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).

  • 91.

    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

  • 92.

    Costello, A. M. & Lidstrom, M. E. Molecular Characterization of Functional and Phylogenetic Genes from Natural Populations of Methanotrophs in Lake Sediments. 65, 5066–5074 (1999).

  • 93.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

  • 94.

    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

  • 95.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

  • 96.

    Yang, S., Wen, X. & Liebner, S. pmoA gene reference database (fasta-formatted sequences and taxonomy). GFZ Data Serv., https://doi.org/10.5880/GFZ.5.3.2016.001 (2016).

  • 97.

    R Core Team. R: A language and environment for statistical computing. (2018).

  • 98.

    McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217 (2013).

  • 99.

    Wickham, H. ggplot2: elegant graphics for data analysis. (Springer-Verlag New York, 2009).

  • 100.

    Leifer, I., Jeuthe, H., Gjøsund, S. H. & Johansen, V. Engineered and Natural Marine Seep, Bubble-Driven Buoyancy Flows. J. Phys. Oceanogr. 39, 3071–3090 (2009).

  • 101.

    Leifer, I. & Tang, D. The acoustic signature of marine seep bubbles. J. Acoust. Soc. Am. 121, EL35–EL40 (2007).

  • 102.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–5 (2012).

  • 103.

    Leifer, I., de Leeuw, G. & Cohen, L. H. Optical Measurement of Bubbles: System Design and Application. J. Atmos. Ocean. Technol. 20, 1317–1332 (2003).

  • 104.

    Clark, J. F., Washburn, L., Hornafius, J. S. & Luyendyk, B. P. Dissolved hydrocarbon flux from natural marine seeps to the southern California Bight. J. Geophys. Res. Ocean. 105, 11509–11522 (2000).


  • Source: Ecology - nature.com

    Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil

    It does not always take two to tango: “Syntrophy” via hydrogen cycling in one bacterial cell