in

Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype

  • 1.

    Rubatzky, V.E., C.F. Quiros, and P.W. Simon, Carrots and related vegetable Umbelliferae. 1999: CABI publishing.

  • 2.

    Ahmad, T. et al. Phytochemicals in Daucus carota and their health benefits. Foods8(9), 424 (2019).

    PubMed Central  CAS  Google Scholar 

  • 3.

    Wells, H. F., Bond, J. K. & Thornsbury, S. Vegetables and pulses outlook. Change2015, 16 (2016).

    Google Scholar 

  • 4.

    Carlson, A., Investigating retail price premiums for organic foods. Amber Waves, May, US Department of Agriculture, Economic Research Service, Washington, DC, 2016

  • 5.

    Westerveld, S. M., McKeown, A. W. & McDonald, M. R. Seasonal nitrogen partitioning and nitrogen uptake of carrots as affected by nitrogen application in a mineral and an organic soil. HortScience41(5), 1332–1338 (2006).

    CAS  Google Scholar 

  • 6.

    Thorup-Kristensen, K. Root growth and nitrogen uptake of carrot, early cabbage, onion and lettuce following a range of green manures. Soil Use Manag.22(1), 29–38 (2006).

    Google Scholar 

  • 7.

    Dugdale, L. et al. Disease response of carrot and carrot somaclones to Alternaria dauci. Plant. Pathol.49(1), 57–67 (2000).

    CAS  Google Scholar 

  • 8.

    Parsons, J. et al. Meloidogyne incognita nematode resistance QTL in carrot. Mol. Breed.35(5), 114 (2015).

    Google Scholar 

  • 9.

    Louarn, S. et al. Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biol. Technol.76, 26–33 (2013).

    CAS  Google Scholar 

  • 10.

    Strobel, G. The emergence of endophytic microbes and their biological promise. J. Fungi4(2), 57 (2018).

    Google Scholar 

  • 11.

    Mandyam, K. & Jumpponen, A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud. Mycol.53, 173–189 (2005).

    Google Scholar 

  • 12.

    Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE6(6), e20396 (2011).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 13.

    Newsham, K. K. A meta-analysis of plant responses to dark septate root endophytes. New Phytol.190(3), 783–793 (2011).

    PubMed  CAS  Google Scholar 

  • 14.

    Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev.79(3), 293–320 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Lugtenberg, B. J., Caradus, J. R. & Johnson, L. J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol.92, 12 (2016).

    Google Scholar 

  • 16.

    Kusari, S., Hertweck, C. & Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol.19(7), 792–798 (2012).

    PubMed  CAS  Google Scholar 

  • 17.

    Huang, Y.-H. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing. J. Integr. Agric.17(2), 359–367 (2018).

    CAS  Google Scholar 

  • 18.

    Rodríguez, P. et al. Are endophytic microorganisms involved in the stereoselective reduction of ketones by Daucus carota root?. J. Mol. Catal. B Enzym.49(1–4), 8–11 (2007).

    Google Scholar 

  • 19.

    Rodriguez, R. et al. Fungal endophytes: diversity and functional roles. New Phytol.182(2), 314–330 (2009).

    PubMed  CAS  Google Scholar 

  • 20.

    Gómez-Lama Cabanás, C. et al. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front. Microbiol.5, 427 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Busby, P. E., Ridout, M. & Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol.90(6), 645–655 (2016).

    PubMed  CAS  Google Scholar 

  • 22.

    Brader, G. et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol.55, 61–83 (2017).

    PubMed  CAS  Google Scholar 

  • 23.

    Schouten, A. Mechanisms involved in nematode control by endophytic fungi. Annu. Rev. Phytopathol.54, 121–142 (2016).

    PubMed  CAS  Google Scholar 

  • 24.

    Latz, M. A. et al. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers.11(5–6), 555–567 (2018).

    Google Scholar 

  • 25.

    Rabiey, M., et al., Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health? Eur. J. Plant Pathol. 2019: p. 1–19.

  • 26.

    Cook, R. J. Advances in plant health management in the twentieth century. Annu. Rev. Phytopathol.38(1), 95–116 (2000).

    PubMed  CAS  Google Scholar 

  • 27.

    Hallmann, J. et al. Bacterial endophytes in agricultural crops. Can. J. Microbiol.43(10), 895–914 (1997).

    CAS  Google Scholar 

  • 28.

    Busby, P. E., Ridout, M. & Newcombe, G. Fungal endophytes: modifiers of plant disease. Plant Mol. Biol.90(6), 645–655 (2016).

    PubMed  CAS  Google Scholar 

  • 29.

    Card, S. et al. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol.92, 8 (2016).

    Google Scholar 

  • 30.

    Card, S. D. et al. Beneficial endophytic microorganisms of Brassica–A review. Biol. Control90, 102–112 (2015).

    Google Scholar 

  • 31.

    May, G., Here come the commensals. Am. J. Bot. 2016. 103.

  • 32.

    Hoagland, L. et al. Foodborne pathogens in horticultural production systems: Ecology and mitigation. Sci. Hortic.236, 192–206 (2018).

    Google Scholar 

  • 33.

    Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J.6(7), 1378 (2012).

    PubMed  CAS  Google Scholar 

  • 34.

    Liu, H. et al. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front. Microbiol.8, 2552 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Gottel, N. R. et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol.77(17), 5934–5944 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 36.

    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature488(7409), 86 (2012).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 37.

    Philippot, L. et al. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol.11(11), 789–799 (2013).

    PubMed  CAS  Google Scholar 

  • 38.

    Oono, R. et al. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am. J. Bot.101(8), 1362–1374 (2014).

    PubMed  Google Scholar 

  • 39.

    Abdelrazek, S., Carrot Endophytes: Diversity, Ecology and Function. 2019, Purdue University Graduate School.

  • 40.

    Hoagland, L. et al. Key traits and promising germplasm for an organic participatory tomato breeding program in the US midwest. HortScience50(9), 1301–1308 (2015).

    Google Scholar 

  • 41.

    Yao, H. & Wu, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiol. Ecol.72(3), 456–463 (2010).

    PubMed  CAS  Google Scholar 

  • 42.

    Kwak, Y.-S. et al. Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2, 4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl. Environ. Microbiol.77(5), 1770–1776 (2011).

    PubMed  CAS  Google Scholar 

  • 43.

    Upreti, R. & Thomas, P. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front. Microbiol.6, 255 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Martin, R. et al. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia107(2), 284–297 (2015).

    PubMed  Google Scholar 

  • 45.

    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature488(7409), 91 (2012).

    ADS  CAS  Google Scholar 

  • 46.

    da Silva, D. A. F. et al. Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiol.14(1), 332 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Correa-Galeote, D., Bedmar, E. J. & Arone, G. J. Maize endophytic bacterial diversity as affected by soil cultivation history. Front. Microbiol.9, 484 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Abdelrazek, S. et al. Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE15(6), e0233783 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 49.

    Horsfall, J. G. An improved grading system for measuring plant diseases. Phytopathology35, 655 (1945).

    Google Scholar 

  • 50.

    Brown, J.R., Recommended chemical soil test procedures for the North Central Region. 1998: Missouri Agricultural Experiment Station, University of Missouri-Columbia

  • 51.

    Green, V. S., Stott, D. E. & Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem.38(4), 693–701 (2006).

    CAS  Google Scholar 

  • 52.

    Weil, R. R. et al. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Alternat. Agric.18(1), 3–17 (2003).

    Google Scholar 

  • 53.

    Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil. Ecol.61, 127–130 (2012).

    Google Scholar 

  • 54.

    Institute, S., JMP: Statistics and Graphics Guide. 2000: Sas Inst.

  • 55.

    Surette, M. A. et al. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil253(2), 381–390 (2003).

    CAS  Google Scholar 

  • 56.

    Corry, J.E., G.D. Curtis, and R.M. Baird, Handbook of culture media for food and water microbiology. 2011: Royal Society of Chemistry.

  • 57.

    Reasoner, D. J. & Geldreich, E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol.49(1), 1–7 (1985).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 58.

    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol.2(2), 113–118 (1993).

    PubMed  CAS  Google Scholar 

  • 59.

    White, T. J. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc18(1), 315–322 (1990).

    Google Scholar 

  • 60.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7(5), 335 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 61.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26(19), 2460–2461 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 62.

    Tikhonov, M., Leach, R. W. & Wingreen, N. S. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J9(1), 68–80 (2015).

    PubMed  Google Scholar 

  • 63.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons.61(1), 1–10 (1992).

    MathSciNet  Google Scholar 

  • 64.

    Chao, A., Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265–270 (1984).

  • 65.

    Faith, D. P. & Baker, A. M. Phylogenetic diversity (PD) and biodiversity conservation: Some bioinformatics challenges. Evol. Bioinform.2, 117693430600200000 (2006).

    Google Scholar 

  • 66.

    Vázquez-Baeza, Y. et al. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience2(1), 16 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol.26(1), 32–46 (2001).

    Google Scholar 

  • 68.

    Roberts, D.W. and M.D.W. Roberts, Package ‘labdsv’. Ordination and Multivariate, 2016.

  • 69.

    Hill, M., R. Bunce, and M. Shaw, Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. The Journal of Ecology, 597–613 (1975).

  • 70.

    Du Toit, L. et al. First report of bacterial blight of carrot in Indiana caused by Xanthomonas hortorum pv. carotae. Plant Dis.98(5), 685–685 (2014).

    PubMed  Google Scholar 

  • 71.

    Arnold, A. E. & Herre, E. A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia95(3), 388–398 (2003).

    PubMed  Google Scholar 

  • 72.

    Gazis, R. & Chaverri, P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol.3(3), 240–254 (2010).

    Google Scholar 

  • 73.

    Rivera-Orduña, F. N. et al. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers.47(1), 65–74 (2011).

    Google Scholar 

  • 74.

    Vieira, M. L. et al. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can. J. Microbiol.58(1), 54–66 (2011).

    MathSciNet  PubMed  Google Scholar 

  • 75.

    Singh, D. K. et al. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn. f.: Spatiotemporal and tissue type effects. Sci. Rep.7, 2 (2017).

    ADS  Google Scholar 

  • 76.

    Arnold, A. E. et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci.100(26), 15649–15654 (2003).

    ADS  PubMed  CAS  Google Scholar 

  • 77.

    Pel, M. J. & Pieterse, C. M. Microbial recognition and evasion of host immunity. J. Exp. Bot.64(5), 1237–1248 (2013).

    PubMed  CAS  Google Scholar 

  • 78.

    Arnold, A. et al. Hyperdiverse fungal endophytes and endolichenic fungi elucidate the evolution of major ecological modes in the Ascomycota. Syst. Biol.58, 283–297 (2009).

    PubMed  Google Scholar 

  • 79.

    Li, H.-Y. et al. Endophytes and their role in phytoremediation. Fungal Divers.54(1), 11–18 (2012).

    Google Scholar 

  • 80.

    Wang, F. et al. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–a soil microcosm experiment. Chemosphere147, 88–97 (2016).

    ADS  PubMed  CAS  Google Scholar 

  • 81.

    Nilsson, R. H. et al. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett.296(1), 97–101 (2009).

    PubMed  CAS  Google Scholar 

  • 82.

    Motooka, D. et al. Fungal ITS1 deep-sequencing strategies to reconstruct the composition of a 26-species community and evaluation of the gut mycobiota of healthy Japanese individuals. Front. Microbiol.8, 238 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 83.

    Dumas-Gaudot, E. et al. A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions. Proteomics4(2), 451–453 (2004).

    PubMed  CAS  Google Scholar 

  • 84.

    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol.22(21), 5271–5277 (2013).

    PubMed  Google Scholar 

  • 85.

    Lemanceau, P. et al. Let the core microbiota be functional. Trends Plant Sci.22(7), 583–595 (2017).

    PubMed  CAS  Google Scholar 

  • 86.

    Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol.14(1), 4–12 (2012).

    PubMed  CAS  Google Scholar 

  • 87.

    Pancher, M., et al., Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Applied and environmental microbiology, 2012: p. AEM. 07655–11.

  • 88.

    Xia, Y. et al. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci.6, 490 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 89.

    Reeve, J. et al. Organic farming, soil health, and food quality: considering possible links. In Advances in Agronomy 319–367 (Elsevier, Amserdam, 2016).

    Google Scholar 

  • 90.

    Hoagland, L. et al. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biol. Fertil. Soils45(1), 11 (2008).

    Google Scholar 

  • 91.

    Rudisill, M. A. et al. Sustaining soil quality in intensively managed high tunnel vegetable production systems: A role for green manures and chicken litter. HortScience50(3), 461–468 (2015).

    Google Scholar 

  • 92.

    Seghers, D. et al. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol.70(3), 1475–1482 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 93.

    Chen, S. & Reese, C. D. Parasitism of the nematode Heterodera glycines by the fungus Hirsutella rhossiliensis as influenced by crop sequence. J. Nematol.31(4), 437 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 94.

    D’Amico, M., Frisullo, S. & Cirulli, M. Endophytic fungi occurring in fennel, lettuce, chicory, and celery—commercial crops in southern Italy. Mycol. Res.112(1), 100–107 (2008).

    PubMed  Google Scholar 

  • 95.

    González-Teuber, M., Vilo, C. & Bascuñán-Godoy, L. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom. Data11, 109–112 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 96.

    Riches, M.R.M.J.V.K., Muck Vegetable Cultivar Trial& Research Report2016. 2016.

  • 97.

    Liu, B. et al. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil. Ecol.37(3), 202–214 (2007).

    Google Scholar 

  • 98.

    van Bruggen, A. H. et al. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl. Soil. Ecol.86, 192–201 (2015).

    Google Scholar 

  • 99.

    Cai, X. et al. Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against Pepper blight (Phytophthora capsici). Front. Microbiol.10, 342 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 100.

    Liu, H. et al. Dark septate endophytes colonizing the roots of ‘non-mycorrhizal’plants in a mine tailing pond and in a relatively undisturbed environment, Southwest China. J. Plant Interact.12(1), 264–271 (2017).

    CAS  Google Scholar 

  • 101.

    Bonito, G. et al. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol.23(13), 3356–3370 (2014).

    PubMed  Google Scholar 

  • 102.

    Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol.60, 35–58 (2015).

    PubMed  CAS  Google Scholar 

  • 103.

    Williamson, V.M., P.A. Roberts, and R. Perry, 13. Mechanisms and genetics of resistance. Root-knot nematodes, 2009. 301.

  • 104.

    Davis, R. M. Carrot diseases and their management. In Diseases of Fruits and Vegetables 397–439 (Springer, Berlin, 2004).

    Google Scholar 

  • 105.

    Farrokhi-Nejad, R., Cromey, M. G. & Moosawi-Jorf, S. A. Determination of the anastomosis grouping and virulence of Rhizoctonia spp. associated with potato tubers grown in Lincoln, New Zealand. Pak. J. Biol. Sci.10(21), 3786–3793 (2007).

    PubMed  Google Scholar 

  • 106.

    Durán-López, M. et al. The micorryzal fungi Ceratobasidium sp. and Sebacina vermifera promote seed germination and seedling development of the terrestrial orchid Epidendrum secundum Jacq. South Afr. J. Bot.125, 54–61 (2019).

    Google Scholar 

  • 107.

    Mosquera-Espinosa, A. T. et al. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia105(1), 141–150 (2013).

    PubMed  Google Scholar 

  • 108.

    Vanhove, W., Vanhoudt, N. & Van Damme, P. Biocontrol of vascular streak dieback (Ceratobasidium theobromae) on cacao (Theobroma cacao) through induced systemic resistance and direct antagonism. Biocontrol Sci. Tech.26(4), 492–503 (2016).

    Google Scholar 

  • 109.

    Taufik, M., et al. Evaluating the ability of endophyte fungus to tontrol VSD diseases in cocoa seeding. in IOP Conference Series: Earth and Environmental Science. 2019. IOP Publishing.

  • 110.

    du Toit, L. & Derie, M. First report of Cladosporium leaf spot of spinach caused by Cladosporium variabile in the winter spinach production region of California and Arizona. Plant Dis.96(7), 1071–1071 (2012).

    PubMed  Google Scholar 

  • 111.

    Hamayun, M. et al. Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J. Microbiol. Biotechnol.25(10), 1785–1792 (2009).

    CAS  Google Scholar 

  • 112.

    Nesha, R. & Siddiqui, Z. A. Effects of Paecilomyces lilacinus and Aspergillus niger alone and in combination on the growth, chlorophyll contents and soft rot disease complex of carrot. Sci. Hortic.218, 258–264 (2017).

    Google Scholar 

  • 113.

    Wang, F. et al. Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J. Microbiol. Biotechnol.23(1), 79–83 (2007).

    Google Scholar 

  • 114.

    Li, X.-J. et al. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J. Agric. Food Chem60(13), 3424–3431 (2012).

    PubMed  CAS  Google Scholar 

  • 115.

    de Vries, R. P., de Lange, E. S. & Stalpers, J. A. Control and possible applications of a novel carrot-spoilage basidiomycete, Fibulorhizoctoniaápsychrophila. Antonie Van Leeuwenhoek93(4), 407–413 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 116.

    Iturralde Martinez, J. F. et al. Multiplex end-point PCR for the detection of three species of ophiosphaerella causing spring dead spot of bermudagrass. Plant Dis.103(8), 2010–2014 (2019).

    PubMed  Google Scholar 

  • 117.

    Gao, L., et al., Three new species of Cyphellophora (Chaetothyriales) associated with sooty blotch and flyspeck. PLoS One, 2015. 10(9).

  • 118.

    Spagnoletti, F. et al. Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl. Soil. Ecol.111, 25–32 (2017).

    Google Scholar 

  • 119.

    Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome: New concepts in the light of meta-omics. Front. Cell. Infect. Microbiol.4, 29 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 120.

    Lee, K., Pan, J. J. & May, G. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol. Lett.299(1), 31–37 (2009).

    PubMed  CAS  Google Scholar 

  • 121.

    Aimé, S. et al. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol. Plant Microbe Interact.26(8), 918–926 (2013).

    PubMed  Google Scholar 

  • 122.

    CaféFilho, A., Reifschneider, F. & Tateishi, N. T. Pathogenicity of Colletotrichum gloeosporioides to carrot. Int. J. Pest Manag.32(4), 274–276 (1986).

    Google Scholar 

  • 123.

    Redman, R. S. et al. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol.119(2), 795–804 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 124.

    Lu, H. et al. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci.151(1), 67–73 (2000).

    CAS  Google Scholar 

  • 125.

    Hiruma, K. et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell165(2), 464–474 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Assessing the value of battery energy storage in future power grids

    Spatial patterns of microbial communities across surface waters of the Great Barrier Reef