in

Characterising the effect of crop species and fertilisation treatment on root fungal communities

  • 1.

    Ramankutty, N. et al. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Schröder, P. et al. Discussion paper: Sustainable increase of crop production through improved technical strategies, breeding and adapted management—A European perspective. Sci. Total Environ. 678, 146–161 (2019).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 5.

    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Wissuwa, M., Mazzola, M. & Picard, C. Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321, 409–430 (2009).

    CAS  Article  Google Scholar 

  • 8.

    Backer, R. et al. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 871, 1–17 (2018).

    Google Scholar 

  • 9.

    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911–E920 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Food and Agriculture Organization of United Nations. World Food and Agriculture Statistical Workbook 2018 https://www.fao.org/3/ca1796en/ca1796en.pdf (2018).

  • 13.

    International Potato Centre. Annual Report 2017 https://cipotato.org/annualreport2017/ (2017).

  • 14.

    Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, 1–14 (2017).

    Article  CAS  Google Scholar 

  • 15.

    Lareen, A., Burton, F. & Schäfer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90, 575–587 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Adair, K. L. & Douglas, A. E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 35, 23–29 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17, 610–621 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Grayston, S. J., Wang, S., Campbell, C. D. & Edwards, A. C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30, 369–378 (1998).

    CAS  Article  Google Scholar 

  • 19.

    Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M. & Fließbach, A. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol. Ecol. 61, 26–37 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 20.

    Francioli, D. et al. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1–16 (2016).

    Article  Google Scholar 

  • 21.

    Lupatini, M., Korthals, G. W., de Hollander, M., Janssens, T. K. S. & Kuramae, E. E. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front. Microbiol. 7, 1–13 (2017).

    Article  Google Scholar 

  • 22.

    Kätterer, T., Börjesson, G. & Kirchmann, H. Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agric. Ecosyst. Environ. 189, 110–118 (2014).

    Article  Google Scholar 

  • 23.

    Liu, B., Tu, C., Hu, S., Gumpertz, M. & Ristaino, J. B. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil Ecol. 37, 202–214 (2007).

    Article  Google Scholar 

  • 24.

    Liu, Y. et al. Direct and indirect influences of 8 year of nitrogen and phosphorus fertilisation on glomeromycota in an alpine meadow ecosystem. New Phytol. 194, 523–535 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Liu, W. et al. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci. Rep. 6, 1–11 (2016).

    Article  CAS  Google Scholar 

  • 26.

    Beauregard, M. S. et al. Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize–soybean rotation system. Mycorrhiza 23, 143–154 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Wemheuer, B., Thomas, T. & Wemheuer, F. Fungal endophyte communities of three agricultural important grass species differ in their response towards management regimes. Microorganisms 7, 37 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Hartman, K. et al. Erratum: Correction to: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming (Microbiome (2018) 6 1 (14)). Microbiome 6, 74 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Estonian Weather Service. Meteorological Yearbook of Estonia 2017 https://www.ilmateenistus.ee/wp-content/uploads/2018/03/aastaraamat_2017.pdf (2018).

  • 30.

    De Leon, D. G. et al. Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE 15, 1–17 (2020).

    Google Scholar 

  • 31.

    Van Reeuwijk, L. P. Nitrogen in Procedures for soil analysis 6th edn (ed. Van Reeuwijk L. P.) (International Soil Reference and Information Centre, Wageningen, 2002).

    Google Scholar 

  • 32.

    Nikitin, B. A. Methods for soil humus determination. Agric.Chem. (Agrokhimya) 3, 156–158 (1999) in Russian

    Google Scholar 

  • 33.

    Egnér, H., Riehm, H. & Domingo, W. R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung 199–215 (The Annals of the Royal Agricultural College of Sweden, 1960) in German

  • 34.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 35.

    Riit, T. et al. Oomycete-specific ITS primers for identification and metabarcoding. MycoKeys 14, 17–30 (2016).

    Article  Google Scholar 

  • 36.

    Anslan, S., Bahram, M., Hiiesalu, I. & Tedersoo, L. PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12692 (2017).

    Article  PubMed  Google Scholar 

  • 37.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 1–22 (2016).

    Google Scholar 

  • 38.

    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Abarenkov, K. et al. The UNITE database for molecular identification of fungi—Recent updates and future perspectives. New Phytol 186, 281–285 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919 (2013).

    Google Scholar 

  • 41.

    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 1–9 (2009).

    Article  CAS  Google Scholar 

  • 43.

    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  • 44.

    Agrios, G. N. In Plant Pathology 5th edn (ed. Agrios, G. N.) (Elsevier Academic Press, Amsterdam, 2005).

  • 45.

    Jensen, B., Lübeck, P. S. & Jørgensen, H. J. L. Clonostachys rosea reduces spot blotch in barley by inhibiting prepenetration growth and sporulation of Bipolaris sorokiniana without inducing resistance. Pest Manag. Sci. 72, 2231–2239 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Knudsen, I. M. B., Hockehull, J. & Jensen, D. N. Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: Effects of selected fungal antagonists on growth and yield components. Plant Pathol 44, 467–477 (1995).

    Article  Google Scholar 

  • 47.

    Bálint, M. et al. Millions of reads, thousands of taxa: Microbial community structure and associations analyzed via marker genesa. FEMS Microbiol. Rev. 40, 686–700 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 48.

    Clarke, K. R. & Gorley, R. N. PRIMERv7: User Manual/Tutorial (PRIMER-E, Plymouth, 2015).

    Google Scholar 

  • 49.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods 1–214 (PRIMER-E, Plymouth, 2008).

    Google Scholar 

  • 50.

    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    Article  Google Scholar 

  • 51.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data. Ecology 82, 290–297 (2001).

    Article  Google Scholar 

  • 53.

    Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K. & Vivanco, J. M. Root exudates regulate soil fungal community composition and diversity. Appl. Environ. Microbiol. 74, 738–744 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Hu, L. et al. Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 1–13 (2018).

    ADS  Article  CAS  Google Scholar 

  • 55.

    Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Emmett, B. D., Youngblut, N. D., Buckley, D. H. & Drinkwater, L. E. Plant phylogeny and life history shape rhizosphere bacterial microbiome of summer annuals in an agricultural field. Front. Microbiol. 8, 1–16 (2017).

    Article  Google Scholar 

  • 57.

    Hawes, M. C., Gunawardena, U., Miyasaka, S. & Zhao, X. The role of root border cells in plant defense. Trends Plant Sci. 5, 128–133 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Hawes, M. C., Bengough, G., Cassab, G. & Ponce, G. Root caps and rhizosphere. J. Plant Growth Regul. 21, 352–367 (2002).

    CAS  Article  Google Scholar 

  • 59.

    Koroney, A. S. et al. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of pectobacterium atrosepticum. Ann. Bot. 118, 797–808 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Moody, S. F., Clarke, A. E. & Bacic, A. Structural analysis of secreted slime from wheat and cowpea roots. Phytochemistry 27, 2857–2861 (1988).

    CAS  Article  Google Scholar 

  • 61.

    Wang, Q., Wang, N., Wang, Y., Wang, Q. & Duan, B. Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus × euramericana (Dode) Guinier.). Plant Soil 421, 123–135 (2017).

    CAS  Article  Google Scholar 

  • 62.

    Tedersoo, L., Mett, M., Ishida, T. A. & Bahram, M. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol. 199, 822–831 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Rich, S. M. & Watt, M. Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. J. Exp. Bot. 64, 1193–1208 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Watt, M., Magee, L. J. & McCully, M. E. Types, structure and potential for axial water flow in the deepest roots of field-grown cereals. New Phytol. 178, 135–146 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Watt, M., Schneebeli, K., Dong, P. & Wilson, I. W. The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct. Plant Biol. 36, 960–969 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Yamaguchi, J. Measurement of root diameter in field-grown crops under a microscope without washing. Soil Sci. Plant Nutr. 48, 625–629 (2002).

    Article  Google Scholar 

  • 67.

    Yamaguchi, J., Tanaka, A. & Tanaka, A. Quantitative observation on the root system of various crops growing in the field. Soil Sci. Plant Nutr. 36, 483–493 (1990).

    Article  Google Scholar 

  • 68.

    Detheridge, A. P. et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agric. Ecosyst. Environ. 228, 49–61 (2016).

    Article  Google Scholar 

  • 69.

    Tedersoo, L. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 10, 346–362 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Chen, M. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut—Pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Song, X., Pan, Y., Li, L., Wu, X. & Wang, Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. Continuous cropping fields. PLoS ONE 13, 1–14 (2018).

    Google Scholar 

  • 72.

    Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).

    Article  Google Scholar 

  • 74.

    Sýkorová, Z., Wiemken, A. & Redecker, D. Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 73, 5426–5434 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 75.

    Francioli, D. et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil https://doi.org/10.1007/s11104-020-04454-y (2020).

    Article  Google Scholar 

  • 76.

    Mariotte, P. et al. Plant–soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Paungfoo-Lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 5, 1–6 (2015).

    Article  CAS  Google Scholar 

  • 79.

    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Rousk, J., Brookes, P. C. & Bååth, E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol. Ecol. 76, 89–99 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Strickland, M. S. & Rousk, J. Considering fungal: Bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).

    CAS  Article  Google Scholar 

  • 82.

    Marschner, P., Kandeler, E. & Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453–461 (2003).

    CAS  Article  Google Scholar 

  • 83.

    Ai, C. et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319, 156–166 (2018).

    ADS  CAS  Article  Google Scholar 

  • 84.

    Giacometti, C. et al. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Appl. Soil Ecol. 64, 32–48 (2013).

    Article  Google Scholar 

  • 85.

    Liu, M. et al. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Appl. Soil. Ecol. 42, 166–175 (2009).

    Article  Google Scholar 

  • 86.

    Lin, X. et al. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environ. Sci. Technol. 46, 5764–5771 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 87.

    Mäder, P., Edenhofer, S., Boller, T., Wiemken, A. & Niggli, U. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol. Fertil. Soils 31, 150–156 (2000).

    Article  Google Scholar 

  • 88.

    Song, G. et al. Contrasting effects of long-term fertilization on the community of saprotrophic fungi and arbuscular mycorrhizal fungiin a sandy loam soil. Plant Soil Environ. 61, 127–136 (2015).

    CAS  Article  Google Scholar 

  • 89.

    Sun, R. et al. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ. Microbiol. 18, 5137–5150 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Setälä, H. & McLean, M. A. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139, 98–107 (2004).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 91.

    van Agtmaal, M. et al. Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Appl. Soil Ecol. 121, 152–160 (2017).

    Article  Google Scholar 

  • 92.

    Chung, Y. R., Hoitink, H. A. H. & Lipps, P. E. Interactions between organic-matter decomposition level and soilborne disease severity. Agric. Ecosyst. Environ. 24, 183–193 (1988).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century

    Technique reveals deeper insights into the makeup of nacre, a natural material