in

Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling

  • 1.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    • Google Scholar
  • 2.

    Feely, R. A. et al. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Cont. Shelf Res. 152, 50–60 (2018).

    • Google Scholar
  • 3.

    Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

    • Google Scholar
  • 4.

    Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).

    • Google Scholar
  • 5.

    Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).

    • Google Scholar
  • 6.

    Andersson, A. J., Mackenzie, F. T. & Lerman, A. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am. J. Sci. 305, 875–918 (2005).

    • Google Scholar
  • 7.

    Macreadie, P. I., Serrano, O., Maher, D. T., Duarte, C. M. & Beardall, J. Addressing calcium carbonate cycling in blue carbon accounting. Limnol. Oceanogr. Lett. 2, 195–201 (2017).

    • Google Scholar
  • 8.

    Cai, W.-J. et al. Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nat. Commun. 8, 369 (2017).

    • Google Scholar
  • 9.

    Green, M. A., Waldbusser, G. G., Reilly, S. L., Emerson, K. & O’Donnell, S. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54, 1037–1047 (2009).

    • Google Scholar
  • 10.

    Abril, G., Etcheber, H., Delille, B., Frankignoulle, M. & Borges, A. V. Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar. Ecol. Prog. Ser. 259, 129–138 (2003).

    • Google Scholar
  • 11.

    Waldbusser, G. G., Powell, E. N. & Mann, R. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94, 895–903 (2013).

    • Google Scholar
  • 12.

    Ware, J. R., Smith, S. V. & Reaka-Kudla, M. L. Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11, 127–130 (1992).

    • Google Scholar
  • 13.

    Borowitzka, M. A. & Larkum, A. W. D. Calcification in algae: mechanisms and the role of metabolism. Crit. Rev. Plant Sci. 6, 1–45 (1987).

    • Google Scholar
  • 14.

    Chauvaud, L., Thompson, J. K., Cloern, J. E. & Thouzeau, G. Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnol. Oceanogr. 48, 2086–2092 (2003).

    • Google Scholar
  • 15.

    Warren, L. A., Maurice, P. A., Parmar, N. & Ferris, F. G. Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol. J. 18, 93–115 (2001).

    • Google Scholar
  • 16.

    Perry, C. T. et al. Fish as major carbonate mud producers and missing components of the tropical carbonate factory. Proc. Natl Acad. Sci. USA 108, 3865–3869 (2011).

    • Google Scholar
  • 17.

    Borowitzka, M. A. Calcification in aquatic plants. Plant Cell Environ. 7, 457–466 (1984).

    • Google Scholar
  • 18.

    Mazarrasa, I. et al. Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences 12, 4993–5003 (2015).

    • Google Scholar
  • 19.

    Enríquez, S. & Schubert, N. Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nat. Commun. 5, 3835 (2014).

    • Google Scholar
  • 20.

    Corlett, H. & Jones, B. Epiphyte communities on Thalassia testudinum from Grand Cayman, British West Indies: their composition, structure, and contribution to lagoonal sediments. Sediment. Geol. 194, 245–262 (2007).

    • Google Scholar
  • 21.

    Koch, E. W. Sediment resuspension in a shallow Thalassia testudinum banks ex König bed. Aquat. Bot. 65, 269–280 (1999).

    • Google Scholar
  • 22.

    Orth, R. J. & Moore, K. A. Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science 222, 51–53 (1983).

    • Google Scholar
  • 23.

    Orth, R. J. et al. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality. Estuaries Coasts 33, 1144–1163 (2010).

    • Google Scholar
  • 24.

    Orth, R. J., Batiuk, R. A., Bergstrom, P. W. & Moore, K. A. A perspective on two decades of policies and regulations influencing the protection and restoration of submerged aquatic vegetation in Chesapeake Bay, USA. Bull. Mar. Sci. 71, 1391–1403 (2002).

    • Google Scholar
  • 25.

    Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl Acad. Sci. USA 115, 3658–3662 (2018).

    • Google Scholar
  • 26.

    Kemp, W. et al. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).

    • Google Scholar
  • 27.

    Murphy, R. R., Kemp, W. M. & Ball, W. P. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries Coasts 34, 1293–1309 (2011).

    • Google Scholar
  • 28.

    Su, J. et al. Source partitioning of oxygen-consuming organic matter in the hypoxic zone of the Chesapeake Bay. Limnol. Oceanogr. https://doi.org/10.1002/lno.11419 (2020).

  • 29.

    Gurbisz, C. & Kemp, W. M. Unexpected resurgence of a large submersed plant bed in Chesapeake Bay: analysis of time series data. Limnol. Oceanogr. 59, 482–494 (2014).

    • Google Scholar
  • 30.

    Waldbusser, G. G., Steenson, R. A. & Green, M. A. Oyster shell dissolution rates in estuarine waters: effects of pH and shell legacy. J. Shellfish Res. 30, 659–669 (2011).

    • Google Scholar
  • 31.

    Waldbusser, G. G., Voigt, E. P., Bergschneider, H., Green, M. A. & Newell, R. I. E. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries Coasts 34, 221–231 (2011).

    • Google Scholar
  • 32.

    Schulte, D. M. History of the Virginia oyster fishery, Chesapeake Bay, USA. Front. Mar. Sci. 4, 127 (2017).

    • Google Scholar
  • 33.

    Officer, C. B. in Estuarine and Wetland Processes: With Emphasis on Modeling (eds Hamilton, P. & Macdonald, K. B.) 65–114 (Springer, 1980).

  • 34.

    Beer, D. D. & Larkum, A. W. D. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ. 24, 1209–1217 (2001).

    • Google Scholar
  • 35.

    Semesi, I. S., Beer, S. & Björk, M. Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar. Ecol. Prog. Ser. 382, 41–47 (2009).

    • Google Scholar
  • 36.

    Koch, E. W. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa. Mar. Biol. 118, 767–776 (1994).

    • Google Scholar
  • 37.

    Du, J. & Shen, J. Water residence time in Chesapeake Bay for 1980–2012. J. Mar. Syst. 164, 101–111 (2016).

    • Google Scholar
  • 38.

    Officer, C. B. Discussion of the behaviour of nonconservative dissolved constituents in estuaries. Estuar. Coast. Mar. Sci. 9, 91–94 (1979).

    • Google Scholar
  • 39.

    Cai, W.-J., Wiebe, W. J., Wang, Y. & Sheldon, J. E. Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River–estuarine complex in the southeastern U.S. Limnol. Oceanogr. 45, 1743–1752 (2000).

    • Google Scholar
  • 40.

    Heck, K. L. & Orth, R. J. Structural components of eelgrass (Zostera marina) meadows in the lower Chesapeake Bay—decapod crustacea. Estuaries 3, 289–295 (1980).

    • Google Scholar
  • 41.

    Karlsen, A. W. et al. Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores. Estuaries 23, 488–508 (2000).

    • Google Scholar
  • 42.

    Kemp, W. M., Smith, E. M., Marvin-DiPasquale, M. & Boynton, W. R. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Mar. Ecol. Prog. Ser. 150, 229–248 (1997).

    • Google Scholar
  • 43.

    Malone, T. C. et al. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Mar. Ecol. Prog. Ser. 32, 149–160 (1986).

    • Google Scholar
  • 44.

    Valle-Levinson, A. & Lwiza, K. M. M. The effects of channels and shoals on exchange between the Chesapeake Bay and the adjacent ocean. J. Geophys. Res. Oceans 100, 18551–18563 (1995).

    • Google Scholar
  • 45.

    Fugate, D. C., Friedrichs, C. T. & Sanford, L. P. Lateral dynamics and associated transport of sediment in the upper reaches of a partially mixed estuary, Chesapeake Bay, USA. Cont. Shelf Res. 27, 679–698 (2007).

    • Google Scholar
  • 46.

    Saderne, V. et al. Role of carbonate burial in Blue Carbon budgets. Nat. Commun. 10, 1106 (2019).

    • Google Scholar
  • 47.

    Gruber, R. K. & Kemp, W. M. Feedback effects in a coastal canopy-forming submersed plant bed. Limnol. Oceanogr. 55, 2285–2298 (2010).

    • Google Scholar
  • 48.

    Cafrey, J. M. & Kemp, W. M. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnol. Oceanogr. 37, 1483–1495 (1992).

    • Google Scholar
  • 49.

    Gurbisz, C. et al. Interactive effects of physical and biogeochemical feedback processes in a large submersed plant bed. Estuaries Coasts 40, 1626–1641 (2017).

    • Google Scholar
  • 50.

    Orth, R. J. et al. Submersed aquatic vegetation in Chesapeake Bay: sentinel species in a changing world. BioScience 67, 698–712 (2017).

    • Google Scholar
  • 51.

    Bockmon, E. E. & Dickson, A. G. A seawater filtration method suitable for total dissolved inorganic carbon and pH analyses. Limnol. Oceanogr. Methods 12, 191–195 (2014).

    • Google Scholar
  • 52.

    Huang, W. J., Wang, Y. & Cai, W. J. Assessment of sample storage techniques for total alkalinity and dissolved inorganic carbon in seawater. Limnol. Oceanogr. Methods 10, 711–717 (2012).

    • Google Scholar
  • 53.

    Goyet, C., Bradshaw, A. L. & Brewer, P. G. The carbonate system in the Black Sea. Deep Sea Res. A 38, S1049–S1068 (1991).

    • Google Scholar
  • 54.

    Hiscock, W. T. & Millero, F. J. Alkalinity of the anoxic waters in the Western Black Sea. Deep Sea Res. II 53, 1787–1801 (2006).

    • Google Scholar
  • 55.

    Verdugo, P. et al. The oceanic gel phase: a bridge in the DOM–POM continuum. Mar. Chem. 92, 67–85 (2004).

    • Google Scholar
  • 56.

    Cai, W.-J., Wang, Y. & Hodson, R. E. Acid–base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochim. Cosmochim. Acta 62, 473–483 (1998).

    • Google Scholar
  • 57.

    Millero, F. J. Carbonate constants for estuarine waters. Mar. Freshwater Res. 61, 139–142 (2010).

    • Google Scholar
  • 58.

    Hunt, C. W., Salisbury, J. E. & Vandemark, D. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 8, 3069–3076 (2011).

    • Google Scholar
  • 59.

    Yang, B., Byrne, R. H. & Lindemuth, M. Contributions of organic alkalinity to total alkalinity in coastal waters: a spectrophotometric approach. Mar. Chem. 176, 199–207 (2015).

    • Google Scholar
  • 60.

    Cai, W.-J. et al. Alkalinity distribution in the western North Atlantic Ocean margins. J. Geophys. Res. Oceans 115, C08014 (2010).

    • Google Scholar
  • 61.

    Xu, Y.-Y., Pierrot, D. & Cai, W.-J. Ocean carbonate system computation for anoxic waters using an updated CO2SYS program. Mar. Chem. 195, 90–93 (2017).

    • Google Scholar
  • 62.

    Pai, S. C., Gong, G. C. & Liu, K. K. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Mar. Chem. 41, 343–351 (1993).

    • Google Scholar
  • 63.

    Fonselius, S., Dyrssen, D. & Yhlen, B. in Methods of Seawater Analysis (eds Grasshoff, K. et al.) 91–100 (Wiley, 2007).

  • 64.

    Kanamori, S. & Ikegami, H. Computer-processed potentiometric titration for the determination of calcium and magnesium in sea water. J. Oceanogr. Soc. Japan 36, 177–184 (1980).

    • Google Scholar
  • 65.

    Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci. 283, 780–799 (1983).

    • Google Scholar
  • 66.

    Stainton, M. P. A syringe gas-stripping procedure for gas-chromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonates in sediments. J. Fish. Res. Board Can. 30, 1441–1445 (1973).

    • Google Scholar
  • 67.

    Joesoef, A., Kirchman, D. L., Sommerfield, C. K. & Cai, W.-J. Seasonal variability of the inorganic carbon system in a large coastal plain estuary. Biogeosciences 14, 4949–4963 (2017).

    • Google Scholar
  • 68.

    Taylor, J. R. An Introduction to Error Analysis Ch. 3 (University Science Books, 1997).

  • 69.

    Hong, Q., Cai, P., Shi, X., Li, Q. & Wang, G. Solute transport into the Jiulong River estuary via pore water exchange and submarine groundwater discharge: new insights from 224Ra/228Th disequilibrium. Geochim. Cosmochim. Acta 198, 338–359 (2017).

    • Google Scholar
  • 70.

    Hussain, N., Church, T. M. & Kim, G. Use of 222Rn and 226Ra to trace groundwater discharge into the Chesapeake Bay. Mar. Chem. 65, 127–134 (1999).

    • Google Scholar
  • 71.

    Luek, J. L. & Beck, A. J. Radium budget of the York River estuary (VA, USA) dominated by submarine groundwater discharge with a seasonally variable groundwater end-member. Mar. Chem. 165, 55–65 (2014).

    • Google Scholar
  • 72.

    Brewer, P. G. & Goldman, J. C. Alkalinity changes generated by phytoplankton growth. Limnol. Oceanogr. 21, 108–117 (1976).

    • Google Scholar
  • 73.

    Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A. & Dickson, A. G. Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 106, 287–300 (2007).

    • Google Scholar
  • 74.

    Fonseca, M. S. in Estuarine Shores: Evolution, Environments and Human Alterations (eds Nordstrom, K. & Roman, C. T.) 261–286 (Wiley, 1996).

  • 75.

    Ward, L. G., Michael Kemp, W. & Boynton, W. R. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar. Geol. 59, 85–103 (1984).

    • Google Scholar
  • 76.

    Russ, E. R. & Palinkas, C. M. Seasonal-scale and decadal-scale sediment-vegetation interactions on the subaqueous Susquehanna River Delta, Upper Chesapeake Bay. Estuaries Coasts 41, 2092–2104 (2018).

    • Google Scholar
  • 77.

    Gurbisz, C., Kemp, W. M., Sanford, L. P. & Orth, R. J. Mechanisms of storm-related loss and resilience in a large submersed plant bed. Estuaries Coasts 39, 951–966 (2016).

    • Google Scholar
  • 78.

    Marani, M. et al. On the drainage density of tidal networks. Water Resour. Res. 39, 1040 (2003).

    • Google Scholar
  • 79.

    Temmerman, S., Bouma, T. J., Govers, G. & Lauwaet, D. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height. Estuaries 28, 338–352 (2005).

    • Google Scholar
  • 80.

    D’Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res. Earth Surf. 112, F01008 (2007).

    • Google Scholar
  • 81.

    Xie, X., Li, M. & Ni, W. Roles of wind-driven currents and surface waves in sediment resuspension and transport during a tropical storm. J. Geophys. Res. Oceans 123, 8638–8654 (2018).

    • Google Scholar

  • Source: Ecology - nature.com

    Machine learning helps map global ocean communities

    Lighting the way to better battery technology