in

Circumpolar projections of Antarctic krill growth potential

  • 1.

    Murphy, E. J. et al. Climatically driven fluctuations in Southern Ocean ecosystems. Proc. R. Soc. Lond. B 274, 3057–3067 (2017).

  • 2.

    Murphy, E. J. et al. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc. R. Soc. Lond. B 283, 20161646 (2016).

  • 3.

    Schmidt, K. et al. Seabed foraging by Antarctic krill: implications for stock assessment, bentho‐pelagic coupling, and the vertical transfer of iron. Limnol. Oceanogr. 56, 1411–1428 (2011).

  • 4.

    Trathan, P. N. & Hill, S. L. in Biology and Ecology of Antarctic Krill (ed. Volker, S.) 321–350 (Springer, 2016).

  • 5.

    Nicol, S., Foster, J. & Kawaguchi, S. The fishery for Antarctic krill—recent developments. Fish Fish. 13, 30–40 (2011).

    • Article
    • Google Scholar
  • 6.

    Nicol, S. & Foster, J. in Biology and Ecology of Antarctic Krill (ed. Volker, S.) 387–421 (Springer, 2016).

  • 7.

    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).

    • Article
    • Google Scholar
  • 8.

    McBride, M. M. et al. Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71, 1934–1955 (2014).

    • Article
    • Google Scholar
  • 9.

    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 3004–3025 (2014).

    • Article
    • Google Scholar
  • 10.

    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).

  • 11.

    Murphy, E. J. et al. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean. Sci. Rep. 7, 6963 (2017).

  • 12.

    Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243–274 (2003).

    • Article
    • Google Scholar
  • 13.

    Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 3 (2019).

  • 14.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

  • 15.

    Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Oceanogr. 134, 93–122 (2015).

    • Article
    • Google Scholar
  • 16.

    Cox, M. J. et al. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. J. Crust. Biol. 38, 656–661 (2018).

  • 17.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).

  • 18.

    Hill, S. L., Atkinson, A., Pakhomov, E. A. & Siegel, V. Evidence for a decline in the population density of Antarctic krill Euphausia superba Dana, 1850 still stands. A comment on Cox et al. J. Crust. Biol. 39, 316–322 (2019).

    • Article
    • Google Scholar
  • 19.

    Ross, R. M., Quetin, L. B., Baker, K. S., Vernet, M. & Smith, R. C. Growth limitation in young Euphausia superba under field conditions. Limnol. Oceanogr. 45, 31–43 (2000).

    • Article
    • Google Scholar
  • 20.

    Kawaguchi, S., Candy, S. G., King, R., Naganobu, M. & Nicol, S. Modelling growth of Antarctic krill. I. Growth trends with sex, length, season, and region. Mar. Ecol. Prog. Ser. 306, 1–15 (2006).

    • Article
    • Google Scholar
  • 21.

    Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).

    • Article
    • Google Scholar
  • 22.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (Cambridge Univ. Press, 2013).

  • 23.

    Stock, C. A. et al. On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Prog. Oceanogr. 88, 1–27 (2011).

  • 24.

    Flato, G. M. Earth system models: an overview. WIREs Clim. Change 2, 783–800 (2011).

    • Article
    • Google Scholar
  • 25.

    Piñones, A. & Fedorov, A. V. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophys. Res. Lett. 43, 8580–8589 (2016).

    • Article
    • Google Scholar
  • 26.

    Leung, S., Cabré, A. & Marinov, I. A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite. Biogeosciences 12, 5715–5734 (2015).

  • 27.

    Groeneveld, J. et al. How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model. Ecol. Model. 303, 78–86 (2015).

    • Article
    • Google Scholar
  • 28.

    Höring, F., Teschke, M., Suberg, L., Kawaguchi, S. & Meyer, B. Light regime affects the seasonal cycle of Antarctic krill (Euphausia superba): impacts on growth, feeding, lipid metabolism, and maturity. Can. J. Zool. 96, 1203–1213 (2018).

  • 29.

    Piccolin, F. et al. The seasonal metabolic activity cycle of Antarctic krill (Euphausia superba): evidence for a role of photoperiod in the regulation of endogenous rhythmicity. Front. Physiol. 9, 1715 (2018).

  • 30.

    Quetin, L. B., Ross, R. M., Fritsen, C. H. & Vernet, M. Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct. Sci. 19, 253–266 (2007).

    • Article
    • Google Scholar
  • 31.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

  • 32.

    Atkinson, A., Siegel, V., Pakhomov, E., Jessopp, M. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Part I 56, 727–740 (2009).

    • Article
    • Google Scholar
  • 33.

    Cavanagh, R. D. et al. A synergistic approach for evaluating climate model output for ecological applications. Front. Mar. Sci. 4, 308 (2017).

    • Article
    • Google Scholar
  • 34.

    Turner, J., Bracegirdle, T. J., Phillips, T., Marshall, G. J. & Hosking, J. S. An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Clim. 26, 1473–1484 (2013).

    • Article
    • Google Scholar
  • 35.

    Siegel, V. & Watkins, J. L. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 21–100 (Springer, 2016).

  • 36.

    Meyer, B. & Teschke, M. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 145–174 (Springer, 2016).

  • 37.

    Perry, F. A. et al. Habitat partitioning in Antarctic krill: spawning hotspots and nursery areas. PLoS ONE 14, e0219325 (2019).

  • 38.

    Kawaguchi, S. in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 225–246 (Springer, 2016).

  • 39.

    Tarling, G. et al. Recruitment of Antarctic krill Euphausia superba in the South Georgia region: adult fecundity and the fate of larvae. Mar. Ecol. Prog. Ser. 331, 161–179 (2007).

    • Article
    • Google Scholar
  • 40.

    Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, K. J. The Antarctic Slope Current in a changing climate. Rev. Geophys. 56, 741–770 (2018).

    • Article
    • Google Scholar
  • 41.

    Meijers, A. J. et al. Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res. Oceans 117, C12008 (2012).

    • Article
    • Google Scholar
  • 42.

    Heuzé, C., Heywood, K. J., Stevens, D. P. & Ridley, J. K. Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett. 40, 1409–1414 (2013).

  • 43.

    Heywood, K. J. et al. Ocean processes at the Antarctic continental slope. Phil. Trans. A 372, 20130047 (2014).

  • 44.

    Quetin, L. B. & Ross, R. M. Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar. Ecol. Prog. Ser. 259, 185–200 (2003).

    • Article
    • Google Scholar
  • 45.

    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).

  • 46.

    Turner, J. et al. Antarctic climate change and the environment: an update. Polar Rec. 50, 237–259 (2013).

    • Article
    • Google Scholar
  • 47.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

  • 48.

    Murphy, E. J., Clarke, A., Abram, N. J. & Turner, J. Variability of sea-ice in the northern Weddell Sea during the 20th century. J. Geophys. Res. Oceans 119, 4549–4572 (2014).

  • 49.

    Report of the Thirty-seventh Meeting of the Scientific Committee (CCAMLR, 2018).

  • 50.

    Krill Fishery Report 2018 (CCAMLR, 2018).

  • 51.

    Reisinger, R. R. et al. Habitat modelling of tracking data from multiple marine predators identifies important areas in the Southern Indian Ocean. Divers. Distrib. 24, 535–550 (2018).

    • Article
    • Google Scholar
  • 52.

    Hindell, M. A. et al. in The Kerguelen Plateau: Marine Ecosystem and Fisheries (eds Duhamel, G. & Welsford, D.) 203–215 (Societe Francaise d’Ichtyologie, 2011).

  • 53.

    Croxall, J. P., Reid, K. & Prince, P. A. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar. Ecol. Prog. Ser. 177, 115–131 (1999).

  • 54.

    Goedegebuure, M. Improving Representations of Higher Trophic-Level Species in Models: Using Individual-Based Modelling and Dynamic Energy Budget Theory to Project Population Trajectories of Southern Elephant Seals. PhD thesis, University of Tasmania (2018).

  • 55.

    Murphy, E. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Phil. Trans. R. Soc. Lond. B 362, 113–148 (2007).

  • 56.

    Constable, A. J. & Kawaguchi, S. Modelling growth and reproduction of Antarctic krill, Euphausia superba, based on temperature, food and resource allocation amongst life history functions. ICES J. Mar. Sci. 75, 738–750 (2017).

    • Article
    • Google Scholar
  • 57.

    Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56, 111–120 (2006).

    • Article
    • Google Scholar
  • 58.

    Thorpe, S. E., Tarling, G. A. & Murphy, E. J. Circumpolar patterns in Antarctic krill larval recruitment: an environmentally driven model. Mar. Ecol. Prog. Ser. 613, 77–96 (2019).

  • 59.

    Siegel, V. & Loeb, V. Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Mar. Ecol. Prog. Ser. 123, 45–56 (1995).

    • Article
    • Google Scholar
  • 60.

    Lowe, A. T., Ross, R. M., Quetin, L. B., Vernet, M. & Fritsen, C. H. Simulating larval Antarctic krill growth and condition factor during fall and winter in response to environmental variability. Mar. Ecol. Prog. Ser. 452, 27–43 (2012).

    • Article
    • Google Scholar
  • 61.

    Yoshida, T. et al. Structural changes in the digestive glands of larval Antarctic krill (Euphausia superba) during starvation. Polar Biol. 32, 503–507 (2009).

    • Article
    • Google Scholar
  • 62.

    Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861 (2017).

    • Article
    • Google Scholar
  • 63.

    Meyer, B. et al. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614 (2009).

  • 64.

    Kohlbach, D. et al. Ice algae-produced carbon is critical for overwintering of Antarctic krill Euphausia superba. Front. Mar. Sci. 4, 310 (2017).

    • Article
    • Google Scholar
  • 65.

    Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 35, 15–37 (2012).

    • Article
    • Google Scholar
  • 66.

    Mackintosh, N. A. Life cycle of Antarctic krill in relation to ice and water conditions. Discovery Rep. 36, 1–94 (1972).

    • Google Scholar
  • 67.

    Arzel, O., Fichefet, T. & Goosse, H. Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model. Online 12, 401–415 (2006).

    • Article
    • Google Scholar
  • 68.

    Meiners, K. et al. Chlorophyll a in Antarctic sea ice from historical ice core data. Geophys. Res. Lett. 39, L21602 (2012).

  • 69.

    Melbourne-Thomas, J. et al. Under ice habitats for Antarctic krill larvae: could less mean more under climate warming? Geophys. Res. Lett. 43, 10322–10327 (2016).

    • Article
    • Google Scholar
  • 70.

    Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Change 3, 843–847 (2013).

  • 71.

    Ericson, J. A. et al. Adult Antarctic krill proves resilient in a simulated high CO2 ocean. Commun. Biol. 1, 190 (2018).

  • 72.

    Riebesell, U. et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450, 545–548 (2007).

  • 73.

    Cummings, V. J. et al. In situ response of Antarctic under-ice primary producers to experimentally altered pH. Sci. Rep. 9, 6069 (2019).

  • 74.

    Renaud, P. E. et al. Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience. ICES J. Mar. Sci. 75, 1871–1881 (2018).

  • 75.

    SeaWiFS Level-3 Binned Chlorophyll Data version 2018 (NASA OB.DAAC, 2018); 10.5067/ORBVIEW-2/SEAWIFS/L3B/CHL/2018

  • 76.

    Johnson, R., Strutton, P. G., Wright, S. W., McMinn, A. & Meiners, K. M. Three improved satellite chlorophyll algorithms for the Southern Ocean. J. Geophys. Res. Oceans 118, 3694–3703 (2013).

  • 77.

    Orsi, A. H. Whitworth III, T. & Nowlin Jr, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I 42, 641–673 (1995).

  • 78.

    Sumner, M. D. raadtools: Tools for Synoptic Environmental Spatial Data. R package version 0.5.3.9001 (2020).

  • 79.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    • Article
    • Google Scholar
  • 80.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 81.

    Riekkola, L. et al. Application of a multi-disciplinary approach to reveal population structure and Southern Ocean feeding grounds of humpback whales. Ecol. Indic. 89, 455–465 (2018).

  • 82.

    Tjiputra, J. F. et al. Evaluation of the carbon cycle components in the Norwegian Earth system model (NorESM). Geosci. Model Dev. 6, 301–325 (2013).

  • 83.

    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

  • 84.

    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).

    • Article
    • Google Scholar
  • 85.

    Veytia, D. et al. Circumpolar Projections of Antarctic Krill (Euphausia superba) Growth Potential version 1 (Australian Antarctic Data Centre, 2020).


  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders