in

Climate model variability leads to uncertain predictions of the future abundance of stream macroinvertebrates

  • 1.

    Arthington, A. H., Bunn, S. E., Poff, N. L. & Naiman, R. J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16, 1311–1318, https://doi.org/10.1890/1051-0761(2006)016[1311:Tcopef]2.0.Co;2 (2006).

  • 2.

    Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784, https://doi.org/10.2307/1313099 (1997).

    • Article
    • Google Scholar
  • 3.

    Dewson, Z. S., James, A. B. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J N Am Benthol Soc 26, 401–415, https://doi.org/10.1899/06-110.1 (2007).

    • Article
    • Google Scholar
  • 4.

    Naiman, R. J., Latterell, J. J., Pettit, N. E. & Olden, J. D. Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience 340, 629–643 (2008).

  • 5.

    Nilson, E. & Krahe, P. Zur Berechnung von Wasserbilanzen in Mitteleuropa im Zeichen des Klimawandels. (2014).

  • 6.

    Alfieri, L., Burek, P., Feyen, L. & Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences 19, 2247 (2015).

  • 7.

    Stagl, J. C. & Hattermann, F. F. Impacts of climate change on riverine ecosystems: alterations of ecologically relevant flow dynamics in the Danube River and its major tributaries. Water 8, 566 (2016).

    • Article
    • Google Scholar
  • 8.

    Kundzewicz, Z. W. et al. Summer floods in Central Europe–climate change track? Natural Hazards 36, 165–189 (2005).

    • Article
    • Google Scholar
  • 9.

    Poff, N. L., Pyne, M. I., Bledsoe, B. P., Cuhaciyan, C. C. & Carlisle, D. M. Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. Journal of the North American Benthological Society 29, 1441–1458, https://doi.org/10.1899/10-030.1 (2010).

    • Article
    • Google Scholar
  • 10.

    Kakouei, K., Kiesel, J., Kail, J., Pusch, M. & Jähnig, S. C. Quantitative hydrological preferences of benthic stream invertebrates in Germany. Ecol Indic 79, 163–172, https://doi.org/10.1016/j.ecolind.2017.04.029 (2017).

    • Article
    • Google Scholar
  • 11.

    Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55, 194–205 (2010).

    • Article
    • Google Scholar
  • 12.

    Pyne, M. I. & Poff, N. L. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States. Global Change Biology 23, 77–93 (2017).

  • 13.

    Kakouei, K. et al. Projected effects of climate‐change‐induced flow alterations on stream macroinvertebrate abundances. Ecology and evolution 8, 3393–3409 (2018).

  • 14.

    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106, 19729–19736, https://doi.org/10.1073/pnas.0901639106 (2009).

  • 15.

    Bush, A. A. et al. Continental-scale assessment of risk to the Australian Odonata from climate change. PloS one 9(2) (2014).

  • 16.

    Kim, J., Choi, J., Choi, C. & Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of the Total Environment 452, 181–195 (2013).

  • 17.

    Yan, D., Werners, S. E., Ludwig, F. & Huang, H. Q. Hydrological response to climate change: The Pearl River, China under different RCP scenarios. Journal of Hydrology: Regional Studies 4, 228–245 (2015).

    • Google Scholar
  • 18.

    Melsen, L. A. et al. Mapping (dis) agreement in hydrologic projections. Hydrology and Earth System Sciences 22, 1775–1791 (2018).

  • 19.

    Addor, N. et al. Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research 50, 7541–7562 (2014).

  • 20.

    Wang, J. et al. Evaluating four downscaling methods for assessment of climate change impact on ecological indicators. Environmental modelling & software 96, 68–82 (2017).

    • Article
    • Google Scholar
  • 21.

    Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55, 147–170 (2010).

    • Article
    • Google Scholar
  • 22.

    Chessman, B. C. Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshwater Biology 60, 50–63 (2015).

    • Article
    • Google Scholar
  • 23.

    Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biological Conservation 160, 40–49 (2013).

    • Article
    • Google Scholar
  • 24.

    Schmidt-Kloiber, A. & Hering, D. www. freshwaterecology. info–An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological indicators 53, 271–282 (2015).

    • Article
    • Google Scholar
  • 25.

    Domisch, S. et al. Modelling distribution in European stream macroinvertebrates under future climates. Global Change Biology 19, 752–762 (2013).

  • 26.

    Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change 14, 563–578 (2014).

    • Article
    • Google Scholar
  • 27.

    Guse, B., Reusser, D. E. & Fohrer, N. How to improve the representation of hydrological processes in SWAT for a lowland catchment–temporal analysis of parameter sensitivity and model performance. Hydrological processes 28, 2651–2670 (2014).

  • 28.

    Arnold, J. G., Srinivasan, R., Muttiah, R. S. & Williams, J. R. Vol. 34 73–89 (Wiley Online Library, JAWRA Journal of the American Water Resources Association, 1998).

  • 29.

    Kiesel, J. et al. Improving hydrological model optimization for riverine species. Ecological Indicators 80, 376–385 (2017).

    • Article
    • Google Scholar
  • 30.

    Pfannerstill, M., Guse, B. & Fohrer, N. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology 510, 447–458 (2014).

  • 31.

    Kling, H., Fuchs, M. & Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology 424, 264–277 (2012).

  • 32.

    Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology 377, 80–91 (2009).

  • 33.

    Kiesel, J. et al. Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecological engineering 127, 404–416 (2019).

    • Article
    • Google Scholar
  • 34.

    Olden, J. D. & Poff, N. L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications 19, 101–121, https://doi.org/10.1002/Rra.700 (2003).

    • Article
    • Google Scholar
  • 35.

    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 365, 2053–2075 (2007).

  • 36.

    R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria., 2016).

  • 37.

    Sokal, R. & Rohlf, F. The principles and practice of statistics in biological research. (Freeman, WH, 1981).

  • 38.

    Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 3, 369 (2013).

  • 39.

    Zhang, H. & Huang, G. H. Development of climate change projections for small watersheds using multi-model ensemble simulation and stochastic weather generation. Climate dynamics 40, 805–821 (2013).

  • 40.

    Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: A long-term data analysis. Science of the Total Environment 621, 588–599 (2018).

  • 41.

    Lawrence, J. E. et al. Long-term macroinvertebrate responses to climate change: implications for biological assessment in mediterranean-climate streams. Journal of the North American Benthological Society 29, 1424–1440 (2010).

    • Article
    • Google Scholar
  • 42.

    Theodoropoulos, C., Vourka, A., Stamou, A., Rutschmann, P. & Skoulikidis, N. Response of freshwater macroinvertebrates to rainfall-induced high flows: A hydroecological approach. Ecological indicators 73, 432–442 (2017).

    • Article
    • Google Scholar
  • 43.

    Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75, 273–299 (2006).

  • 44.

    Buth, M. et al. Vulnerabilität Deutschlands gegenüber dem Klimawandel. Clim Chang 24, 2015 (2015).

    • Google Scholar
  • 45.

    Eckhardt, K. & Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology 284, 244–252 (2003).

  • 46.

    Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. A. Challenges in combining projections from multiple climate models. Journal of Climate 23, 2739–2758 (2010).

  • 47.

    Gleckler, P. J., Taylor, K. E. & Doutriaux, C. Performance metrics for climate models. Journal of Geophysical Research: Atmospheres 113 (2008).

  • 48.

    Jung, I., Bae, D. & Lee, B. Possible change in Korean streamflow seasonality based on multi-model climate projections. Hydrological Processes 27, 1033–1045 (2013).

  • 49.

    Kotlarski, S. et al. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model. Development 7, 1297–1333 (2014).

    • Google Scholar
  • 50.

    Kakouei, K. et al. Projected effects of climate-change-induced flow alterations on stream macroinvertebrate abundances. Ecology and Evolution. https://doi.org/10.1002/ece3.3907 (2018).

  • 51.

    Schmutz, S. & Sendzimir, J. Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future. Vol. 8 (Springer, 2018).

  • 52.

    Jungwirth, M., Muhar, S. & Schmutz, S. (Eds.) Assessing the Ecological Integrity of Running Waters: Proceedings of the International Conference, Held in Vienna, Austria, 9–11 November 1998 (Vol. 149). Springer Science & Business Media (2012).

  • 53.

    Buisson, L., Thuiller, W., Lek, S., Lim, P. & Grenouillet, G. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14, 2232–2248 (2008).

  • 54.

    Wallace, J. B., Eggert, S. L., Meyer, J. L. & Webster, J. R. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277, 102–104 (1997).

  • 55.

    Graça, M. A. The role of invertebrates on leaf litter decomposition in streams–a review. International Review of Hydrobiology 86, 383–393 (2001).

  • 56.

    Hering, D. et al. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51, 1757–1785 (2006).

    • Article
    • Google Scholar
  • 57.

    Kakouei, K. Predicting potential ecological effects of flow alterations using quantitative flow preferences of stream macroinvertebrates Doctoral thesis: https://refubium.fu-berlin.de/bitstream/handle/fub188/23508/Thesis_Kakouei.pdf?isAllowed=y&sequence=4 (2018).


  • Source: Ecology - nature.com

    Half of U.S. deaths related to air pollution are linked to out-of-state emissions

    Evolutionary conservation of within-family biodiversity patterns