in

Coexistence of nestedness and modularity in host–pathogen infection networks

  • 1.

    Handel, A., Lebarbenchon, C., Stallknecht, D. & Rohani, P. Trade-offs between and within scales: environmental persistence and within-host fitness of avian influenza viruses. Proc. R. Soc. B 281, 20133051 (2014).

  • 2.

    Laine, A.-L. Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proc. R. Soc. B 273, 267–273 (2006).

  • 3.

    Hamer, G. L. et al. Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS ONE 6, e23767 (2011).

  • 4.

    Viana, M. et al. Dynamics of a morbillivirus at the domestic-wildlife interface: canine distemper virus in domestic dogs and lions. Proc. Natl Acad. Sci. USA 112, 1464–1469 (2015).

  • 5.

    Blumenthal, D., Mitchell, C. E., Pysek, P. & Jarosík, V. Synergy between pathogen release and resource availability in plant invasion. Proc. Natl Acad. Sci. USA 106, 7899–7904 (2009).

  • 6.

    McLeish, M., Sacristán, S., Fraile, A. & García-Arenal, F. Scale dependencies and generalism in host use shape virus prevalence. Proc. R. Soc. B 284, 20172066 (2017).

  • 7.

    Carlsson-Granér, U. & Thrall, P. H. Host resistance and pathogen infectivity in host populations with varying connectivity. Ecol. Lett. 69, 926–938 (2015).

    • Google Scholar
  • 8.

    Martinez, M. E. The calendar of epidemics: seasonal cycles of infectious diseases. PLoS Pathog. 14, e1007327 (2018).

  • 9.

    McLeish, M., Fraile, A. & García-Arenal, F. Ecological complexity in plant virus host range evolution. Adv. Virus Res. 101, 293–339 (2018).

  • 10.

    Ostfeld, R. S. & Keesing, F. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can. J. Zool. 78, 2061–2078 (2000).

    • Article
    • Google Scholar
  • 11.

    Gurarie, D. & Seto, E. Y. W. Connectivity sustains disease transmission in environments with low potential for endemicity: modelling schistosomiasis with hydrologic and social connectivities. J. R. Soc. Interface 6, 495–508 (2009).

  • 12.

    Yang, H., Tang, M. & Gross, T. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes. Sci. Rep. 5, 13122 (2015).

  • 13.

    Webster, J. P., Borlase, A. & Rudge, J. W. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era. Phil. Trans. R. Soc. B. 372, 20160091 (2017).

  • 14.

    Bascompte, J. & Jordano, P. Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    • Article
    • Google Scholar
  • 15.

    Lewinsohn, T. M., Prado, P. I., Jordano, P., Bascompte, J. & Olesen, J. M. Structure in plant–animal interaction assemblages. Oikos 113, 174–184 (2006).

    • Article
    • Google Scholar
  • 16.

    Ings, T. C. et al. Ecological networks—beyond food webs. J. Animal Ecol. 78, 253–269 (2009).

    • Article
    • Google Scholar
  • 17.

    Blüthgen, N., Fründ, J., Vázquez, D. P. & Menzel, F. What do interaction network metrics tell us about specialization and biological traits? Ecology 89, 3387–3399 (2008).

  • 18.

    Blüthgen, N. Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl. Ecol. 11, 185–195 (2010).

    • Article
    • Google Scholar
  • 19.

    Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584 (2017).

    • Article
    • Google Scholar
  • 20.

    Pawar, S. Why are plant–pollinator networks nested? Science 345, 383 (2014).

  • 21.

    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

  • 22.

    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

  • 23.

    Weitz, J. S. et al. Phage–bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).

  • 24.

    Guimarães, P. R. et al. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr. Biol. 17, 1797–1803 (2007).

  • 25.

    Pires, M. M. & Guimarães, P. R. Interaction intimacy organizes networks of antagonistic interactions in different ways. J. R. Soc. Interface 10, 20120649 (2013).

  • 26.

    Thebault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

  • 27.

    Poulin, R. Network analysis shining light on parasite ecology and diversity. Trends Parasitol. 26, 492–498 (2010).

  • 28.

    Bellay, S. et al. The patterns of organisation and structure of interactions in a fish–parasite network of a neoropical river. Int. J. Parasitol. 45, 549–557 (2015).

  • 29.

    Vazquez, D. P., Poulin, R., Krasnov, B. R. & Shenbrot, G. I. Species abundance and the distribution of specialization in host–parasite interaction networks. J. Anim. Ecol. 74, 946–955 (2005).

    • Article
    • Google Scholar
  • 30.

    Krasnov, B., Mouillot, D., Khokhlova, I., Shenbrot, G. I. & Poulin, R. Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology 139, 338–347 (2012).

  • 31.

    Morris, R. J., Gripenberg, S., Lweis, O. T. & Roslin, T. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17, 340–349 (2014).

  • 32.

    Maunsell, S. C., Kitching, R. L., Burwell, C. J. & Morris, R. J. Changes in host–parasitoid food web structure with elevation. J. Animal Ecol. 84, 353–363 (2015).

    • Article
    • Google Scholar
  • 33.

    Fortuna, M. A. et al. Coevolutionary dynamics shape the structure of bacteria–phage infection networks. Evolution 73, 1001–1011 (2019).

  • 34.

    Janzen, D. H. On ecological fitting. Oikos 45, 308–310 (1985).

    • Article
    • Google Scholar
  • 35.

    Agosta, S. J. & Klemens, J. A. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11, 1123–1134 (2008).

  • 36.

    Agosta, S. J. & Klemens, J. A. Resource specialization in a phytophagous insect: no evidence for genetically based performance trade-offs across hosts in the field or laboratory. J. Evol. Biol. 22, 907–912 (2009).

  • 37.

    Wells, K. & Clark, N. J. Host specificity in variable environments. Trends Parsitol. 35, 452–465 (2019).

    • Article
    • Google Scholar
  • 38.

    Golubski, A. J., Westlund, E. E., Vandermeer, J. & Pascual, M. Ecological networks over the edge: hypergraph trait-mediated indirect interaction (TMII) structure. Trends Ecol. Evol. 31, 344–354 (2016).

  • 39.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist programme. Proc. R. Soc. B 205, 581–598 (1979).

    • CAS
    • Google Scholar
  • 40.

    Barrett, R. D. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).

  • 41.

    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).

  • 42.

    Maynard, D. S., Serván, C. A. & Allesina, S. Network spandrels reflect ecological assembly. Ecol. Lett. 21, 324–334 (2018).

  • 43.

    Acevedo, M. A., Dillemuth, F. P., Flick, A., Faldyn, M. J. & Elderd, B. D. Virulence-driven trade-offs in disease transmission: a meta-analysis. Evolution 73, 636–647 (2019).

  • 44.

    Ashby, B., Gupta, S. & Buckling, A. Spatial structure mitigates fitness costs in host–parasite coevolution. Am. Nat. 183, E64–E74 (2014).

  • 45.

    Woolhouse, M. E. J. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847 (2005).

  • 46.

    Weiher, E. & Keddy, P. A. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74, 159–164 (1995).

    • Article
    • Google Scholar
  • 47.

    Ulrich, W. & Gotelli, N. J. Null model analysis of species nestedness patterns. Ecology 88, 1824–1831 (2007).

  • 48.

    Bello, Fde The quest for trait convergence and divergence in community assembly: are null-models the magic wand? Glob. Ecol. Biogeogr. 21, 312–317 (2012).

    • Article
    • Google Scholar
  • 49.

    Feng, W. & Takemoto, K. Heterogeneity in ecological mutualistic networks dominantly determines community stability. Sci. Rep. 4, 5912 (2014).

  • 50.

    Jonhson, S., Domínguez-García, V. & Muñoz, M. A. Factors determining nestedness in complex networks. PLoS ONE 8, e74025 (2013).

  • 51.

    Pellissier, L. Stability and the competition-dispersal trade-off as drivers of speciation and biodiversity gradients. Front. Ecol. 3, 00052 (2015).

    • Google Scholar
  • 52.

    Levins, R. & Culver, D. Regional coexistence of species and competition between rare species. Proc. Natl Acad. Sci. USA 68, 1246–1248 (1971).

  • 53.

    Fitzpatrick, B. M., Fordyce, J. A. & Gavrilets, S. What, if anything, is sympatric speciation? J. Evol. Biol. 21, 1452–1459 (2008).

  • 54.

    Flores, C. O., Valverde, S. & Weitz, J. S. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 7, 520–532 (2013).

  • 55.

    Beckett, S. J. & Williams, H. T. P. Coevolutionary diversification creates nested-modular structure in phage-bacteria interaction networks. Interface Focus 3, 20130033 (2013).

  • 56.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

  • 57.

    Keyser, C. A., De Fine Licht, H. H., Steinwender, B. M. & Meyling, N. V. Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiol. 15, 249 (2015).

  • 58.

    Büchi, L. & Vuilleumier, S. Ecological strategies in stable and disturbed environments depend on species specialization. Oikos 125, 1408–1420 (2016).

    • Article
    • Google Scholar
  • 59.

    Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251 (2014).

  • 60.

    Nebreda, M. et al. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of lettuce mosaic virus. Virus Res. 100, 83–88 (2004).

  • 61.

    Nebreda, M., Michelena, J. M. & Fereres, A. Seasonal abundance of aphid species on lettuce crops in central Spain and identification of their main parasitoids. J. Plant Dis. Prot. 112, 405–415 (2005).

    • Google Scholar
  • 62.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • 63.

    Fournier-Level, A. et al. A map of local adaptation in Arabidopsis thaliana. Science 334, 86–89 (2011).

  • 64.

    Hendrick, M. F. et al. The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in Yellowstone Mimulus guttatus. Mol. Ecol. 25, 5647–5662 (2016).

  • 65.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    • Article
    • Google Scholar
  • 66.

    Sacristán, S., Fraile, A. & García-Arenal, F. Population dynamics of cucumber mosaic virus in melon crops and in weeds in central Spain. Phytopathology 94, 992–998 (2004).

  • 67.

    MacArthur, R. H., & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • 68.

    Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

  • 69.

    Susi, H., Vale, P. F. & Laine, A.-L. Host genotype and coinfection modify the relationship of within and between host transmission. Am. Nat. 186, 252–263 (2015).

  • 70.

    Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).

  • 71.

    Staniczenko, P. P. A., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391 (2013).

  • 72.

    Wigner, E. P. Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955).

    • Article
    • Google Scholar
  • 73.

    Nepusz, T., Petróczi, A., Négyessy, L. & Bazsó, F. Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77, 016107 (2008).

  • 74.

    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

  • 75.

    Trajanovski, H., Wang, H. & Van Mieghem, P. Maximum modular graphs. Eur. Phys. J. B 85, 244 (2012).


  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels