in

Comparison of soil microbial community between reseeding grassland and natural grassland in Songnen Meadow

  • 1.

    Zhang, Y. et al. Variation of soil microbial community along elevation in the Shennongjia Mountain. For. Sci. 50, 161–166 (2014).

    ADS  CAS  Google Scholar 

  • 2.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Mariotte, P. et al. Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–136 (2018).

    PubMed  Article  Google Scholar 

  • 4.

    Mommer, L. et al. Lost in diversity: The interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 218, 542–553 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072–1083 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Zhang, Y. G. et al. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. Sci. Rep. 6, 28–39 (2016).

    ADS  Article  CAS  Google Scholar 

  • 9.

    Yang, Y. F. et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 8, 430–440 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Zhang, Y. G. et al. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microb. Biotechnol. 8, 739–746 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Shen, C. C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).

    CAS  Article  Google Scholar 

  • 12.

    Zhang, Y. G. et al. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow. Mol. Ecol. 26, 3676–3686 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Davidson, E. A., Janssens, I. A. & Luo, Y. Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).

    ADS  Article  Google Scholar 

  • 14.

    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Zhang, Q. et al. Effects of clipping frequency on the relationships between species diversity and productivity in temperate steppe. Int. J. Agric. Biol. 20, 2325–2328 (2018).

    Google Scholar 

  • 16.

    Guo, Z. G., Cheng, G. D. & Wang, G. X. Plant Diversity of Alpine Kobresia Meadow in the Northern Region of the Tibetan Plateau. J. Glaciol. Geocryol. 26, 95–100 (2004).

    Google Scholar 

  • 17.

    Fu, B. et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 45, 223–243 (2017).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Yang, Y., Dou, Y. & An, S. Testing association between soil bacterial diversity and soil carbon storage on the loess plateau. Sci. Total Environ. 626, 48–58 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Yang, Y., Cheng, H., Liu, L. X., Dou, Y. X. & An, S. S. Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. For. Ecol. Manage. 460, 117–128 (2020).

    Article  Google Scholar 

  • 20.

    Tong, X. W. et al. Rasmus Fensholt. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).

    Article  Google Scholar 

  • 21.

    Liu, Y. et al. Temporal and spatial succession and dynamics of soil fungal communities in restored grassland on the Loess Plateau in China. Land Degrad. Dev. 30, 1273–1287 (2019).

    Article  Google Scholar 

  • 22.

    Bardgett, R. D. et al. Below-ground microbial community development in a high temperature world. Oikos 85, 193–203 (1999).

    Article  Google Scholar 

  • 23.

    Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in us top soils in a century. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1719685115 (2018).

    Article  PubMed  Google Scholar 

  • 24.

    Chen, J. S., Zhu, R. F. & Zhang, Y. X. The effect of nitrogen addition on seed yield and yield components of Leymus chinensis. J. Soil Sci. Plant Nutr. 13, 329–339 (2013).

    Google Scholar 

  • 25.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Lal, R. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol. 24, 3285–3301 (2018).

    ADS  Article  Google Scholar 

  • 27.

    Gao, Q. Z. et al. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quatern. Int. 226, 143–150 (2010).

    Article  Google Scholar 

  • 28.

    Li, N. et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau. Acta Ecol. Sin. 31, 0895–0905 (2011).

    CAS  Google Scholar 

  • 29.

    Gao, Y. H. et al. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 444, 356–362 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 30.

    Chen, J. S. et al. Effects of clipping and fertilizing n on the relationship between diversity and productivity of Leymus Chinensis Meadow. Acta Agrestia Sin. 24, 910–914 (2016).

    Google Scholar 

  • 31.

    Peng, F. et al. Intensified plant N and C pool with more available nitrogen under experimental warming in an alpine meadow ecosystem. Ecol. Evol. 6, 8546–8555 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Li, L. et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau. Sci. Rep. 6, 31–38 (2016).

    Google Scholar 

  • 33.

    Niu, S. Q. et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina MiSeq high-throughput sequencing system. Microbiology China 9, 66–72 (2017).

    Google Scholar 

  • 34.

    Chaffron, S. et al. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Steele, J. A. et al. Marine bacterial, archaeal and protest an association networks reveal ecological linkages. ISME J. 5, 1414–1425 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Kreimer, A. et al. NetCmpt: a network-based tool for calculating the metabolic competition between bacterial species. Bioinformatics 28, 2195–2197 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    O’Brien, J. D. et al. A Bayesian approach to inferring the phylogenetic structure of communities from metagenomic data. Genetics 197, 925–937 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Deng, Y. et al. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Glob. Change Biol. 22, 957–964 (2016).

    ADS  Article  Google Scholar 

  • 39.

    Zhou, J. Z. et al. Functional molecular ecological networks. mBio 1, e00169-10 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Zhou, J. Z. et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, e00122-e211 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Wang, J. F. & Wu, Q. B. Influences of the vegetaion degradation on the shallow cryic soil environment in the wet meadow areas on the Qinghai-Tibetan plateau. J. Lanzhou Univ. 47, 39–45 (2011).

    Google Scholar 

  • 43.

    Wang, Y. et al. Artificial reforestation produces less diverse soil nitrogen-cycling genes than natural restoration. Ecosphere 10, e02562 (2019).

    Google Scholar 

  • 44.

    Bao, S. D. Soil and Agricultural Chemical Analysis (China Agriculture Press, Beijing, 2000).

    Google Scholar 

  • 45.

    Zhou, J. Z., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Shen, C. C. et al. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain. Front. Microbiol. 7, 1184 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Chen, W., Koide, R. T. & Eissenstat, D. M. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes. Funct. Ecol. 32, 858–869 (2018).

    Article  Google Scholar 

  • 48.

    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Glob. Change 8, 813–818 (2018).

    ADS  Article  Google Scholar 

  • 49.

    Jiao, S., Xu, Y., Zhang, J. & Lu, Y. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Microbiome 6, 146–156 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Brabcová, V., Štursová, M. & Baldrian, P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118, 187–198 (2018).

    Article  CAS  Google Scholar 

  • 51.

    He, J. Z. & Ge, Y. Recent advances in soil microbial biogeography. Acta Ecol. Sin. 28, 5571–5582 (2008).

    CAS  Google Scholar 

  • 52.

    Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 53.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    ADS  Article  Google Scholar 

  • 55.

    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 56.

    Sun, X., Gao, Y. & Yang, Y. F. Recent advancement in environmental research with metagenomics tools. Biodivers. Sci. 21, 393–400 (2013).

    CAS  Google Scholar 

  • 57.

    Barabási, A. L. & Oltvai, Z. N. Network biology: understan Mommer the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    PubMed  Article  CAS  Google Scholar 

  • 58.

    Ding, J. J. et al. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Sci. Rep. 5, 7994 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 55–61 (2018).

    Article  Google Scholar 

  • 60.

    Xiong, J. B. et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ. Microbiol. 14, 2457–2466 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77