in

Context-aware dimensionality reduction deconvolutes gut microbial community dynamics

  • 1.

    Gibson, T. E. & Gerber, G. K. Robust and scalable models of microbiome dynamics. In Proceedings of the 35th International Conference on Machine Learning 80 (eds Dy, J. et al.) 1763–1772 (PMLR, 2018).

  • 2.

    Shenhav, L. et al. Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Comput. Biol. 15, e1006960 (2019).

    CAS  Article  Google Scholar 

  • 3.

    Äijö, T., Müller, C. L. & Bonneau, R. Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing. Bioinformatics 34, 372–380 (2018).

    Article  Google Scholar 

  • 4.

    Silverman, J. D., Durand, H. K., Bloom, R. J., Mukherjee, S. & David, L. A. Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. Microbiome 6, 202 (2018).

    Article  Google Scholar 

  • 5.

    Martino, C. et al. A novel sparse compositional technique reveals microbial perturbations. mSystems 4, e00016–e00019 (2019).

    Article  Google Scholar 

  • 6.

    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article  Google Scholar 

  • 7.

    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).

    Article  Google Scholar 

  • 8.

    Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol. 11, 37–50 (1912).

    Article  Google Scholar 

  • 10.

    Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    Article  Google Scholar 

  • 11.

    Aitchison, J. Principal component analysis of compositional data. Biometrika 70, 57–65 (1983).

    Article  Google Scholar 

  • 12.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  Article  Google Scholar 

  • 13.

    McDonald, D. et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847–848 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82–343ra82 (2016).

    Article  Google Scholar 

  • 15.

    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).

    Article  Google Scholar 

  • 16.

    McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    CAS  Article  Google Scholar 

  • 18.

    Keshavan, R. H., Montanari, A. & Oh, S. Low-rank matrix completion with noisy observations: a quantitative comparison. In Proc. 2009 47th Annual Allerton Conference on Communication, Control, and Computing 1216–1222 (Curran Associates, 2009).

  • 19.

    Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational approach. In Proc. 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing 129–132 (Curran Associates, 2005).

  • 20.

    Anandkumar, A., Ge, R. & Janzamin, M. Guaranteed non-orthogonal tensor decomposition via alternating rank-1 updates. Preprint at arXiv http://arxiv.org/abs/1402.5180 (2014).

  • 21.

    Jain, P. & Oh, S. Provable tensor factorization with missing data. Adv. Neural Inf. Process. Syst. 27 (eds Ghahramani, Z. et al.) 1431–1439 (Curran Associates, 2014).

  • 22.

    Aitchison, J. & Ho, C. H. The multivariate Poisson-log normal distribution. Biometrika 76, 643–653 (1989).

    Article  Google Scholar 

  • 23.

    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021–18 (2018).

    CAS  Article  Google Scholar 

  • 26.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS  Article  Google Scholar 

  • 27.

    Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 551, 457 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing