in

Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene

[adace-ad id="91168"]
  • 1.

    Ji, S. C. et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene. Earth Planet. Sci. Lett. 499, 134–144 (2018).

    Google Scholar 

  • 2.

    Sosdian, S. M. et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth Planet. Sci. Lett. 498, 362–376 (2018).

    Google Scholar 

  • 3.

    Super, J. R. et al. North Atlantic temperature and pCO2 coupling in the early–middle Miocene. Geology 46, 519–522 (2018).

    Google Scholar 

  • 4.

    Flower, B. P. & Kennett, J. P. Middle Miocene ocean-climate transition—high-resolution oxygen and carbon isotopic records from Deep-Sea Drilling Project Site 588A, Southwest Pacific. Paleoceanography 8, 811–843 (1993).

    Google Scholar 

  • 5.

    Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Google Scholar 

  • 6.

    de Boer, B., van de Wal, R. S. W., Bintanja, R., Lourens, L. J. & Tuenter, E. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Ann. Glaciol. 51, 23–33 (2010).

    Google Scholar 

  • 7.

    Lear, C. H., Mawbey, E. M. & Rosenthal, Y. Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: toward unlocking temperatures and saturation states. Paleoceanography 25, PA4215 (2010).

  • 8.

    Frigola, A., Prange, M. & Schulz, M. Boundary conditions for the middle Miocene climate transition (MMCT v1.0). Geosci. Model Dev. 11, 1607–1626 (2018).

    Google Scholar 

  • 9.

    Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–1770 (2004).

    Google Scholar 

  • 10.

    Kuhnert, H., Bickert, T. & Paulsen, H. Southern Ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene. Earth Planet. Sci. Lett. 284, 630–638 (2009).

    Google Scholar 

  • 11.

    Holbourn, A., Kuhnt, W., Schulz, M. & Erlenkeuser, H. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438, 483–487 (2005).

    Google Scholar 

  • 12.

    Gray, W. R. & Evans, D. Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 34, 306–315 (2019).

    Google Scholar 

  • 13.

    Holland, K. et al. Constraining multiple controls on planktic foraminifera Mg/Ca. Geochim. Cosmochim. Acta 273, 116–136 (2020).

    Google Scholar 

  • 14.

    Exon, N. F. et al. in Proc. Ocean Drilling Program Initial Reports Vol. 189, Ch. 6 (ODP, 2001).

  • 15.

    Ghosh, P. et al. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70, 1439–1456 (2006).

    Google Scholar 

  • 16.

    Peral, M. et al. Updated calibration of the clumped isotope thermometer in planktonic and benthic foraminifera. Geochim. Cosmochim. Acta 239, 1–16 (2018).

    Google Scholar 

  • 17.

    Leutert, T. J. et al. Sensitivity of clumped isotope temperatures in fossil benthic and planktic foraminifera to diagenetic alteration. Geochim. Cosmochim. Acta 257, 354–372 (2019).

    Google Scholar 

  • 18.

    Meinicke, N. et al. A robust calibration of the clumped isotopes to temperature relationship for foraminifers. Geochim. Cosmochim. Acta 270, 160–183 (2020).

    Google Scholar 

  • 19.

    Schouten, S., Hopmans, E. C., Schefuss, E. & Damsté, J. S. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).

    Google Scholar 

  • 20.

    Schouten, S., Hopmans, E. C. & Damsté, J. S. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).

    Google Scholar 

  • 21.

    Elling, F. J., Konneke, M., Mussmann, M., Greve, A. & Hinrichs, K. U. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic Thaumarchaeal isolates. Geochim. Cosmochim. Acta 171, 238–255 (2015).

    Google Scholar 

  • 22.

    Heath, R. A. et al. A review of the physical oceanography of the seas around New Zealand—1982. N. Z. J. Mar. Freshwater Res. 19, 79–124 (1985).

    Google Scholar 

  • 23.

    Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).

    Google Scholar 

  • 24.

    van Hinsbergen, D. J. J. et al. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10, e0126946 (2015).

    Google Scholar 

  • 25.

    King, A. L. & Howard, W. R. Seasonality of foraminiferal flux in sediment traps at Chatham Rise, SW Pacific: implications for paleotemperature estimates. Deep-Sea Res. I 48, 1687–1708 (2001).

    Google Scholar 

  • 26.

    Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-year centennial-scale marine record of Southern Hemisphere climatic oscillation. Science 301, 948–952 (2003).

    Google Scholar 

  • 27.

    Vázquez Riveiros, N. et al. Mg/Ca thermometry in planktic foraminifera: improving paleotemperature estimations for G. bulloides and N. pachyderma left. Geochem. Geophys. Geosyst. 17, 1249–1264 (2016).

    Google Scholar 

  • 28.

    Sangiorgi, F. et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    Google Scholar 

  • 29.

    Knorr, G. & Lohmann, G. Climate warming during Antarctic ice sheet expansion at the middle Miocene transition. Nat. Geosci. 7, 376–381 (2014).

    Google Scholar 

  • 30.

    Ho, S. L. & Laepple, T. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean. Nat. Geosci. 9, 606–610 (2016).

    Google Scholar 

  • 31.

    Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanography 27, PA4205 (2012).

    Google Scholar 

  • 32.

    Lear, C. H. et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography 30, 1437–1454 (2015).

    Google Scholar 

  • 33.

    Shevenell, A. E., Kennett, J. P. & Lea, D. W. Southern Ocean Middle Miocene ODP1171 Foraminifer Stable Isotope and Mg/Ca Data IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series no. 2006-061 (NOAA/NCDC, 2006).

  • 34.

    Gray, W. R. et al. The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): a global sediment trap calibration. Earth Planet. Sci. Lett. 482, 607–620 (2018).

    Google Scholar 

  • 35.

    Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006).

    Google Scholar 

  • 36.

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Google Scholar 

  • 37.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Google Scholar 

  • 38.

    Studer, A. S. et al. Antarctic Zone nutrient conditions during the last two glacial cycles. Paleoceanography 30, 845–862 (2015).

    Google Scholar 

  • 39.

    Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    Google Scholar 

  • 40.

    Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Google Scholar 

  • 41.

    Bernasconi, S. M. et al. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst. 19, 2895–2914 (2018).

    Google Scholar 

  • 42.

    Kele, S. et al. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range. Geochim. Cosmochim. Acta 168, 172–192 (2015).

    Google Scholar 

  • 43.

    Kim, J. H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    Google Scholar 

  • 44.

    Greenop, R. et al. A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera. Clim. Past 13, 149–170 (2017).

    Google Scholar 

  • 45.

    Shevenell, A. E. & Kennett, J. P. in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica Vol. 151 (eds Exon, N. et al.) 235–252 (AGU, 2004).

  • 46.

    Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a Southern Ocean perspective. Geochem. Geophys. Geosyst. 9, Q02006 (2008).

    Google Scholar 

  • 47.

    Schmid, T. W., Radke, J. & Bernasconi, S. M. Clumped-Isotope Measurements on Small Carbonate Samples with a Kiel IV Carbonate Device and a MAT 253 Mass Spectrometer Application Note 30233 (ThermoFisher, 2012).

  • 48.

    Hu, B. et al. A modified procedure for gas-source isotope ratio mass spectrometry: the long-integration dual-inlet (LIDI) methodology and implications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28, 1413–1425 (2014).

    Google Scholar 

  • 49.

    Meckler, A. N., Ziegler, M., Millan, M. I., Breitenbach, S. F. M. & Bernasconi, S. M. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28, 1705–1715 (2014).

    Google Scholar 

  • 50.

    Grauel, A. L. et al. Calibration and application of the ‘clumped isotope’ thermometer to foraminifera for high resolution climate reconstructions. Geochim. Cosmochim. Acta 108, 125–140 (2013).

    Google Scholar 

  • 51.

    Rodríguez-Sanz, L. et al. Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera. Sci. Rep. 7, 16572 (2017).

    Google Scholar 

  • 52.

    Schmid, T. W. & Bernasconi, S. M. An automated method for ‘clumped-isotope’ measurements on small carbonate samples. Rapid Commun. Mass Spectrom. 24, 1955–1963 (2010).

    Google Scholar 

  • 53.

    Piasecki, A. et al. Application of clumped isotope thermometry to benthic foraminifera. Geochem. Geophys. Geosyst. 20, 2082–2090 (2019).

    Google Scholar 

  • 54.

    Huntington, K. W. et al. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom. 44, 1318–1329 (2009).

    Google Scholar 

  • 55.

    Auderset, A., Schmitt, M. & Martínez-García, A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective accelerated solvent extraction. Org. Geochem. 143, 103979 (2020).

    Google Scholar 

  • 56.

    Hopmans, E. C., Schouten, S. & Damsté, J. S. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).

    Google Scholar 

  • 57.

    Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).

    Google Scholar 

  • 58.

    Evans, D., Brierley, C., Raymo, M. E., Erez, J. & Müller, W. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth Planet. Sci. Lett. 438, 139–148 (2016).

    Google Scholar 

  • 59.

    Cramwinckel, M. J. et al. Synchronous tropical and polar temperature evolution in the Eocene. Nature 559, 382–386 (2018).

    Google Scholar 

  • 60.

    Shackleton, N. J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Colloq. Int. C.N.R.S. 219, 203–209 (1974).

    Google Scholar 

  • 61.

    Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).

    Google Scholar 

  • 62.

    Schmidt, G. A., Bigg, G. R. & Rohling, E. J. Global Seawater Oxygen-18 Database Version 1.22 (GISS, 1999); https://data.giss.nasa.gov/o18data/


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing