in

Coral reef survival under accelerating ocean deoxygenation

  • 1.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158 (2014).

    • Google Scholar
  • 2.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).

    • Google Scholar
  • 3.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    • Google Scholar
  • 4.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    • Google Scholar
  • 5.

    D. Laffoley, D. & Baxter, J. M. (eds) Ocean Deoxygenation: Everyone’s Problem. Causes, Impacts, Consequences and Solutions (IUCN, 2019).

  • 6.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl Acad. Sci. USA 114, 3660–3665 (2017).

    • Google Scholar
  • 7.

    Johnson, M. D., Rodriguez, L. M. & Altieri, A. H. Shallow-water hypoxia and mass mortality on a Caribbean coral reef. B. Mar. Sci. 94, 143–144 (2018).

    • Google Scholar
  • 8.

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    • Google Scholar
  • 9.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    • Google Scholar
  • 10.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    • Google Scholar
  • 11.

    Diaz, R. & Rosenberg, R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. An Annu. Rev. 33, 245–303 (1995).

    • Google Scholar
  • 12.

    Nilsson, H. C. & Rosenberg, R. Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile-imaging and by grab samples. Mar. Ecol. Prog. Ser. 197, 139–149 (2000).

    • Google Scholar
  • 13.

    Hobbs, J.-P. P. A. & Mcdonald, C. A. Increased seawater temperature and decreased dissolved oxygen triggers fish kill at the Cocos (Keeling) Islands, Indian Ocean. J. Fish Biol. 77, 1219–1229 (2010).

    • Google Scholar
  • 14.

    Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).

    • Google Scholar
  • 15.

    Levin, L. A. & Breitburg, D. L. Linking coasts and seas to address ocean deoxygenation. Nat. Clim. Change 5, 401–403 (2015).

    • Google Scholar
  • 16.

    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    • Google Scholar
  • 17.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    • Google Scholar
  • 18.

    Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    • Google Scholar
  • 19.

    Falkowski, P. G. et al. Ocean deoxygenation: past, present, and future. Eos (November 2011).

  • 20.

    Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).

    • Google Scholar
  • 21.

    Clapham, M. E. & Renne, P. R. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47, 275–303 (2019).

    • Google Scholar
  • 22.

    Weidlich, O., Kiessling, W. & Flügel, E. Permian-Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. Geology 31, 961–964 (2003).

    • Google Scholar
  • 23.

    Pruss, S. B. & Bottjer, D. J. Late Early Triassic microbial reefs of the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeogr. Palaeocl. 211, 127–137 (2004).

    • Google Scholar
  • 24.

    Penn, A. J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

  • 25.

    Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).

    • Google Scholar
  • 26.

    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    • Google Scholar
  • 27.

    Kenkel, C. D., Moya, A., Strahl, J., Humphrey, C. & Bay, L. K. Functional genomic analysis of corals from natural CO2-seeps reveals core molecular responses involved in acclimatization to ocean acidification. Glob. Chang. Biol. 24, 158–171 (2017).

    • Google Scholar
  • 28.

    Okazaki, R. R. et al. Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Glob. Chang. Biol. 23, 1023–1035 (2017).

    • Google Scholar
  • 29.

    Hobbs, J. P. A. & Macrae, H. Unusual weather and trapped coral spawn lead to fish kill at a remote coral atoll. Coral Reefs 31, 961 (2012).

    • Google Scholar
  • 30.

    Lapointe, B. E. & Matzie, W. R. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 19, 422 (1996).

    • Google Scholar
  • 31.

    Andréfouët, S., Dutheil, C., Menkes, C. E., Bador, M. & Lengaigne, M. Mass mortality events in atoll lagoons: environmental control and increased future vulnerability. Glob. Chang. Biol. 21, 195–205 (2015).

    • Google Scholar
  • 32.

    Baird, A. H., Keith, S. A., Woolsey, E., Yoshida, R. & Naruse, T. Rapid coral mortality following unusually calm and hot conditions on Iriomote, Japan. F1000Res. 6, 1728 (2017).

    • Google Scholar
  • 33.

    Lagos, M. E., Barneche, D. R., White, C. R. & Marshall, D. J. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions. Glob. Chang. Biol. 23, 2321–2330 (2017).

    • Google Scholar
  • 34.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    • Google Scholar
  • 35.

    Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Chang. Biol. 21, 1395–1406 (2015).

    • Google Scholar
  • 36.

    Mee, L. D., Friedrich, J. & Gomoiu, M. T. Restoring the Black Sea in times of uncertainty. Oceanography 18, 100–111 (2005).

    • Google Scholar
  • 37.

    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: Beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).

    • Google Scholar
  • 38.

    van de Leemput, I. A., Hughes, T. P., van Nes, E. H. & Scheffer, M. Multiple feedbacks and the prevalence of alternate stable states on coral reefs. Coral Reefs 35, 857–865 (2016).

    • Google Scholar
  • 39.

    Nilsson, G. E. & Östlund-Nilsson, S. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes. Proc. R. Soc. B Biol. Sci. 271, S30–S33 (2004).

    • Google Scholar
  • 40.

    Scofield, V., Jacques, S. M. S., Guimarães, J. R. D. & Farjalla, V. F. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons. Front. Microbiol. 6, 310 (2015).

    • Google Scholar
  • 41.

    Roik, A. et al. Year-long monitoring of physico-chemical and biological variables provide a comparative baseline of coral reef functioning in the central Red Sea. PLoS ONE 11, e0163939 (2016).

    • Google Scholar
  • 42.

    Camp, E. F. et al. Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci. Rep. 7, 2434 (2017).

    • Google Scholar
  • 43.

    Guadayol, Ò., Silbiger, N. J., Donahue, M. J. & Thomas, F. I. M. Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. PLoS ONE 9, e85213 (2014).

    • Google Scholar
  • 44.

    Ruiz-Jones, L. J. & Palumbi, S. R. Transcriptome-wide changes in coral gene expression at noon and midnight under field conditions. Biol. Bull. 228, 227–241 (2015).

    • Google Scholar
  • 45.

    Meire, L., Soetaert, K. E. R. & Meysman, F. J. R. Impact of global change on coastal oxygen dynamics and risk of hypoxia. Biogeosciences 10, 2633–2653 (2013).

    • Google Scholar
  • 46.

    Camp, E. F. et al. Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH. Proc. R. Soc. B Biol. Sci. 283, 20160442 (2016).

    • Google Scholar
  • 47.

    Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).

    • Google Scholar
  • 48.

    Wild, C., Niggl, W., Naumann, M. S. & Haas, A. F. Organic matter release by Red Sea coral reef organisms-potential effects on microbial activity and in situ O2 availability. Mar. Ecol. Prog. Ser. 411, 61–71 (2010).

    • Google Scholar
  • 49.

    Bessell-Browne, P. et al. Impacts of turbidity on corals: the relative importance of light limitation and suspended sediments. Mar. Pollut. Bull. 117, 161–170 (2017).

    • Google Scholar
  • 50.

    Guihen, D., White, M. & Lundälv, T. Zooplankton drive diurnal changes in oxygen concentration at Tisler cold-water coral reef. Coral Reefs 37, 1013–1025 (2018).

    • Google Scholar
  • 51.

    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).

    • Google Scholar
  • 52.

    Nilsson, G. E. & Östlund-Nilsson, S. Does size matter for hypoxia tolerance in fish? Biol. Rev. 83, 173–189 (2008).

    • Google Scholar
  • 53.

    Haas, A. F., Smith, J. E., Thompson, M. & Deheyn, D. D. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2, e235 (2014).

    • Google Scholar
  • 54.

    Guzmán, H. M., Cortés, J., Glynn, P. W. & Richmond, R. H. Coral mortality associated with dinoflagellate blooms in the eastern Pacific (Costa Rica and Panama). Mar. Ecol. Prog. Ser. 60, 299–303

  • 55.

    Adjeroud, M., Andréfouët, S. & Payri, C. Mass mortality of macrobenthic communities in the lagoon of Hikueru atoll (French Polynesia). Coral Reefs 19, 287–291 (2001).

    • Google Scholar
  • 56.

    Laboy-Nieves, E. N. et al. Mass mortality of tropical marine communities in Morrocoy, Venezuela. B. Mar. Sci. 68, 163–179 (2001).

    • Google Scholar
  • 57.

    Roder, C. et al. First biological measurements of deep-sea corals from the Red Sea. Sci. Rep. 3, 2802 (2013).

    • Google Scholar
  • 58.

    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    • Google Scholar
  • 59.

    Harrington, L., Fabricius, K., De’Ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).

    • Google Scholar
  • 60.

    Mccoy, S. J. & Kamenos, N. A. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J. Phycol. 51, 6–24 (2015).

    • Google Scholar
  • 61.

    Nilsson, G. E. & Östlund-Nilsson, S. Hypoxia tolerance in coral reef fishes. Fish Physiol. 21, 583–596 (2005).

    • Google Scholar
  • 62.

    Wood, C. M. The fallacy of the Pcrit – are there more useful alternatives? J. Exp. Biol. 221, jeb163717 (2018).

    • Google Scholar
  • 63.

    Regan, M. D. et al. Don’t throw the fish out with the respirometry water. J. Exp. Biol. 222, jeb200253 (2019).

    • Google Scholar
  • 64.

    Grieshaber, M. K., Hardewig, I., Kreutzer, U. & Pörtner, H. O. in Reviews of Physiology, Biochemistry and Pharmacology Vol. 125 43–147 (Springer, 1993).

  • 65.

    Speers-Roesch, B., Mandic, M., Groom, D. J. E. & Richards, J. G. Critical oxygen tensions as predictors of hypoxia tolerance and tissue metabolic responses during hypoxia exposure in fishes. J. Exp. Mar. Bio. Ecol. 449, 239–249 (2013).

    • Google Scholar
  • 66.

    Herbert, N. A., Skjæraasen, J. E., Nilsen, T., Salvanes, A. G. V. & Steffensen, J. F. The hypoxia avoidance behaviour of juvenile Atlantic cod (Gadus morhua L.) depends on the provision and pressure level of an O2 refuge. Mar. Biol. 158, 737–746 (2011).

    • Google Scholar
  • 67.

    Pichavant, K. et al. Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol. 59, 875–883 (2001).

    • Google Scholar
  • 68.

    Kramer, D. L. Dissolved oxygen and fish behavior. Environ. Biol. Fishes 18, 81–92 (1987).

    • Google Scholar
  • 69.

    Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).

    • Google Scholar
  • 70.

    Vaquer-Sunyer, R. & Duarte, C. M. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Chang. Biol. 17, 1788–1797 (2011).

    • Google Scholar
  • 71.

    Patterson, M. R. A mass transfer explanation of metabolic scaling relations in some aquatic invertebrates and algae. Science 255, 1421–1423 (1992).

    • Google Scholar
  • 72.

    Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl Acad. Sci. USA 111, 13391–13396 (2014).

    • Google Scholar
  • 73.

    Yum, L. K. et al. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals. Sci. Rep. 7, 6442 (2017).

    • Google Scholar
  • 74.

    Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1, 78 (2014).

    • Google Scholar
  • 75.

    Dodds, L. A., Roberts, J. M., Taylor, A. C. & Marubini, F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J. Exp. Mar. Biol. Ecol. 349, 205–214 (2007).

    • Google Scholar
  • 76.

    Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. Proc. Natl Acad. Sci. USA 110, 8978–8983 (2013).

    • Google Scholar
  • 77.

    Shick, J. M., Malcolm, J. & Shick, J. M. Diffusion limitation and hyperoxic enhancement of oxygen consumption in zooxanthellate sea anemones, zoanthids, and corals. Biol. Bull. 179, 148–158 (1990).

    • Google Scholar
  • 78.

    Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30, 111–122 (1985).

    • Google Scholar
  • 79.

    Kühl, M., Cohen, Y., Dalsgaard, T., Jørgensen, B. B. & Revsbech, N. P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–177 (1995).

    • Google Scholar
  • 80.

    Jørgensen, B. B. & Des Marais, D. J. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnol. Oceanogr. 35, 1343–1355 (1990).

    • Google Scholar
  • 81.

    De Beer, D., Kühl, M., Stambler, N. & Vaki, L. A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Mar. Ecol. Prog. Ser. 194, 75–85 (2000).

    • Google Scholar
  • 82.

    Nelson, H. R. & Altieri, A. H. Oxygen: the universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).

    • Google Scholar
  • 83.

    Chindapol, N., Kaandorp, J. A., Cronemberger, C., Mass, T. & Genin, A. Modelling growth and form of the scleractinian coral Pocillopora verrucosa and the influence of hydrodynamics. PLoS Comput. Biol. 9, e1002849 (2013).

    • Google Scholar
  • 84.

    Ong, R. H., King, A. J. C., Kaandorp, J. A., Mullins, B. J. & Caley, M. J. The effect of allometric scaling in coral thermal microenvironments. PLoS ONE 12, e0184214 (2017).

    • Google Scholar
  • 85.

    Ferguson, N., White, C. R. & Marshall, D. J. Competition in benthic marine invertebrates: the unrecognized role of exploitative competition for oxygen. Ecology 94, 126–135 (2013).

    • Google Scholar
  • 86.

    Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evol. 32, 735–745 (2017).

    • Google Scholar
  • 87.

    Hadaidi, G. et al. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci. Rep. 7, 45362 (2017).

    • Google Scholar
  • 88.

    Sunagawa, S. et al. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 3, 512–521 (2009).

    • Google Scholar
  • 89.

    Roder, C. et al. Bacterial profiling of White Plague Disease in a comparative coral species framework. ISME J. 8, 31–39 (2014).

    • Google Scholar
  • 90.

    Jessen, C. et al. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea coral Acropora hemprichii. PLoS ONE 8, e62091 (2013).

    • Google Scholar
  • 91.

    Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).

    • Google Scholar
  • 92.

    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).

    • Google Scholar
  • 93.

    Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012).

    • Google Scholar
  • 94.

    Taabazuing, C. Y., Hangasky, J. A. & Knapp, M. J. Oxygen sensing strategies in mammals and bacteria. J. Inorg. Biochem. 133, 63–72 (2014).

    • Google Scholar
  • 95.

    Kaelin, W. G. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    • Google Scholar
  • 96.

    Loenarz, C. et al. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep. 12, 63–70 (2011).

    • Google Scholar
  • 97.

    Rytkönen, K. T., Williams, T. A., Renshaw, G. M., Primmer, C. R. & Nikinmaa, M. Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Mol. Biol. Evol. 28, 1913–1926 (2011).

    • Google Scholar
  • 98.

    Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547 (2011).

    • Google Scholar
  • 99.

    Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    • Google Scholar
  • 100.

    Mansfield, K. D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab. 1, 393–399 (2005).

    • Google Scholar
  • 101.

    Mills, D. B. et al. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. eLife 7, e31176 (2018).

  • 102.

    Levy, O. et al. Complex Diel cycles of gene expression in coral-algal symbiosis. Science 331, 175 (2011).

  • 103.

    DeSalvo, M. K., Estrada, A., Sunagawa, S. & Medina, M. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms. Coral Reefs 31, 215–228 (2012).

    • Google Scholar
  • 104.

    Zoccola, D. et al. Structural and functional analysis of coral hypoxia inducible factor. PLoS ONE 12, e0186262 (2017).

    • Google Scholar
  • 105.

    Kumar, H. & Choi, D.-K. Hypoxia inducible factor pathway and physiological adaptation: a cell survival pathway? Mediat. Inflamm. 2015, 584758 (2015).

    • Google Scholar
  • 106.

    Pelster, B. & Egg, M. Multiplicity of hypoxia-inducible transcription factors and their connection to the circadian clock in the Zebrafish. Physiol. Biochem. Zool. 88, 146–157 (2015).

    • Google Scholar
  • 107.

    Suggett, D. J. et al. Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J. Phycol. 44, 948–956 (2008).

    • Google Scholar
  • 108.

    Hawkins, T. D. & Davy, S. K. Nitric oxide production and tolerance differ among symbiodinium types exposed to heat stress. Plant Cell Physiol. 53, 1889–1898 (2012).

    • Google Scholar
  • 109.

    Yoshida, R., Naruse, T., Baird, A. H., Keith, S. A. & Woolsey, E. Rapid coral mortality following doldrums-like conditions on Iriomote, Japan. F1000Res. 6, 1728 (2017).

    • Google Scholar
  • 110.

    Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Chang. Biol. 24, e474–e484 (2018).

    • Google Scholar
  • 111.

    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627–636 (2017).

    • Google Scholar
  • 112.

    van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).

    • Google Scholar
  • 113.

    Ho, D. H. & Burggren, W. W. Parental hypoxic exposure confers offspring hypoxia resistance in zebrafish (Danio rerio). J. Exp. Biol. 215, 4208–4216 (2012).

    • Google Scholar
  • 114.

    Robertson, C. E., Wright, P. A., Köblitz, L. & Bernier, N. J. Hypoxia-inducible factor-1 mediates adaptive developmental plasticity of hypoxia tolerance in zebrafish, Danio rerio. Proc. R. Soc. B Biol. Sci. 281, 20140637 (2014).

    • Google Scholar
  • 115.

    Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L. & Ravasi, T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat. Clim. Change 8, 504–509 (2018).

    • Google Scholar
  • 116.

    Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).

    • Google Scholar
  • 117.

    McBryan, T. L., Anttila, K., Healy, T. M. & Schulte, P. M. Responses to temperature and hypoxia as interacting stressors in fish: implications for adaptation to environmental change. Integr. Comp. Biol. 53, 648–659 (2013).

    • Google Scholar
  • 118.

    Nilsson, G. E., Östlund-Nilsson, S. & Munday, P. L. Effects of elevated temperature on coral reef fishes: Loss of hypoxia tolerance and inability to acclimate. Comp. Biochem. Phys. A 156, 389–393 (2010).

    • Google Scholar
  • 119.

    Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).

    • Google Scholar
  • 120.

    Gallo, N. D., Victor, D. G. & Levin, L. A. Ocean commitments under the Paris Agreement. Nat. Clim. Change 7, 833–838 (2017).

    • Google Scholar
  • 121.

    Pörtner, H. O., Langenbuch, M. & Michaelidis, B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J. Geophys. Res.-Oceans 110, C09S10 (2005).

    • Google Scholar
  • 122.

    Veron, J. E. N. Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27, 459–472 (2008).

    • Google Scholar
  • 123.

    Rutherford, L. D. & Thuesen, E. V. Metabolic performance and survival of medusae in estuarine hypoxia. Mar. Ecol. Prog. Ser. 294, 189–200 (2005).

    • Google Scholar
  • 124.

    Carey, N. et al. Variation in oxygen consumption among ‘living fossils’ (Mollusca: Polyplacophora). J. Mar. Biol. Assoc. UK 93, 197–207 (2013).

    • Google Scholar
  • 125.

    Auel, H. & Verheye, H. M. Hypoxia tolerance in the copepod Calanoides carinatus and the effect of an intermediate oxygen minimum layer on copepod vertical distribution in the northern Benguela Current upwelling system and the Angola–Benguela Front. J. Exp. Mar. Bio. Ecol. 352, 234–243 (2007).

    • Google Scholar
  • 126.

    Low, N. H. N. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).

    • Google Scholar
  • 127.

    Shashar, N., Kinane, S., Jokiel, P. L. & Patterson, M. R. Hydromechanical boundary layers over a coral reef. J. Exp. Mar. Bio. Ecol. 199, 17–28 (1996).

    • Google Scholar
  • 128.

    Klein, S. G., Steckbauer, A. & Duarte, C. M. Defining CO2 and O2 syndromes of marine biomes in the Anthropocene. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14879 (2019).

  • 129.

    Solaini, G., Baracca, A., Lenaz, G. & Sgarbi, G. Hypoxia and mitochondrial oxidative metabolism. BBA-Bioenergetics 1797, 1171–1177 (2010).

    • Google Scholar
  • 130.

    Gooday, A. J. et al. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 488–502 (2009).

    • Google Scholar
  • 131.

    López-Barneo, J., del Toro, R., Levitsky, K. L., Chiara, M. D. & Ortega-Sáenz, P. Regulation of oxygen sensing by ion channels. J. Appl. Physiol. 96, 1187–1195 (2004).

    • Google Scholar
  • 132.

    Viollet, B. AMPK: lessons from transgenic and knockout animals. Front. Biosci. 1, 19–44 (2009).

    • Google Scholar
  • 133.

    Wang, F., Chen, Z.-H. & Shabala, S. Hypoxia sensing in plants: on a quest for ion channels as putative oxygen sensors. Plant Cell Physiol. 58, 1126–1142 (2017).

    • Google Scholar
  • 134.

    Olson, K. R. et al. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J. Exp. Biol. 209, 4011–4023 (2006).

    • Google Scholar
  • 135.

    Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    • Google Scholar
  • 136.

    Kallio, P. J. et al. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J. 17, 6573–6586 (1998).

    • Google Scholar
  • 137.

    Semenza, G. L. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114, 2015–2019 (2009).

    • Google Scholar
  • 138.

    Ney, P. A. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. BBA-Mol. Cell Res. 1853, 2775–2783 (2015).

    • Google Scholar
  • 139.

    Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    • Google Scholar
  • 140.

    Narendra, D. P. & Youle, R. J. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid. Redox Sign. 14, 1929–1938 (2011).

    • Google Scholar
  • 141.

    Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy and mitophagy. Cell Death Differ. 16, 939–946 (2009).

    • Google Scholar
  • 142.

    Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008).

    • Google Scholar

  • Source: Ecology - nature.com

    Newly discovered enzyme “square dance” helps generate DNA building blocks

    Narcea—an unknown, ancient cultivated rose variety from northern Spain