in

Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change

  • 1.

    Lobell, D. B., Schlenker, W., & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 1204531 (2011).

  • 2.

    Bindi, M. & Olesen, J. E. The responses of agriculture in Europe to climate change. Reg. Environ. Change 11, 151–158 (2011).

    • Article
    • Google Scholar
  • 3.

    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806 (2014).

  • 4.

    Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R. & Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2, 90–104 (2001).

    • Article
    • Google Scholar
  • 5.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287 (2014).

    • Article
    • Google Scholar
  • 6.

    Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K. M., Erda, L., Howden, S. M. & Tubiello, F. N. Food, fibre and forest products. Climate change, 2007: Impacts, Adaption, Vulnerability, (eds Parry M. L., et al.) 273–313 (Cambridge Univ Press, Cambridge, UK, 2007).

  • 7.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671 (2002).

  • 8.

    Endreny, T. A. Strategically growing the urban forest will improve our world. Nat. Commun. 9, 1160 (2018).

  • 9.

    Lamichhane, J. R., Dachbrodt-Saaydeh, S., Kudsk, P. & Messéan, A. Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis. 100, 10–24 (2016).

  • 10.

    Feldmann, C. & Hamm, U. Consumers’ perceptions and preferences for local food: a review. Food Qual. Preference 40, 152–164 (2015).

    • Article
    • Google Scholar
  • 11.

    Howden, S. M. Adapting agriculture to climate change. Proc. Natl Acad. Sci. USA 104, 19691–19696 (2007).

  • 12.

    Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 259, 698–709 (2010).

    • Article
    • Google Scholar
  • 13.

    Cao, M. & Woodward, F. I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob. Change Biol. 4, 185–198 (1998).

    • Article
    • Google Scholar
  • 14.

    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

  • 15.

    Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).

  • 16.

    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).

  • 17.

    Rosenzweig, C. & Parry, M. L. Potential impact of climate change on world food supply. Nature 367, 133–138 (1994).

    • Article
    • Google Scholar
  • 18.

    Wheeler, T. & Von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).

  • 19.

    Maracchi, G., Sirotenko, O. & Bindi, M. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change 70, 117–135 (2005).

  • 20.

    Schröter, D. et al. Ecosystem service supply and vulnerability to global change in Europe. Science 310, 1333–1337 (2005).

  • 21.

    Connor, D. J., Loomis, R. S., & Cassman, K. G. Crop Ecology: Productivity and Management in Agricultural Systems (Cambridge University Press, New York, 2011).

  • 22.

    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389 (2002).

  • 23.

    Olesen, J. E. & Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16, 239–262 (2002).

    • Article
    • Google Scholar
  • 24.

    Tubiello, F. N., Soussana, J. F. & Howden, S. M. Crop and pasture response to climate change. Proc. Natl Acad. Sci. 104, 19686–19690 (2007).

  • 25.

    Bussotti, F., Pollastrini, M., Holland, V. & Brueggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 111, 91–113 (2015).

    • Article
    • Google Scholar
  • 26.

    Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014).

  • 27.

    Bindi, M., Fibbi, L. & Miglietta, F. Free air CO2 enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur. J. Agron. 14, 145–155 (2001).

    • Article
    • Google Scholar
  • 28.

    Lamichhane, J. R. et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35, 443–459 (2015).

    • Article
    • Google Scholar
  • 29.

    Bebber, D. P., Ramotowski, M. A. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985 (2013).

    • Article
    • Google Scholar
  • 30.

    Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).

    • Article
    • Google Scholar
  • 31.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    • Article
    • Google Scholar
  • 32.

    Bradshaw, C. J. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).

  • 33.

    Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).

  • 34.

    Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8.1, 1–16 (2002).

    • Article
    • Google Scholar
  • 35.

    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    • Article
    • Google Scholar
  • 36.

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

  • 37.

    Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).

    • Article
    • Google Scholar
  • 38.

    Mazzi, D., Bravin, E., Meraner, M., Finger, R. & Kuske, S. Economic impact of the introduction and establishment of Drosophila suzukii on sweet cherry production in Switzerland. Insects 8, 18 (2017).

  • 39.

    Dunne, J. A. The network structure of food webs. in Ecological Networks: Linking Structure to Dynamics in Food Webs. (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, Oxford, UK, 2006).

  • 40.

    Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153 (2019).

  • 41.

    Food and Agriculture Organization of the United Nations. FAOSTAT database http://www.fao.org/faostat/en/#home (2018).

  • 42.

    Roques, A. et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invasions 18, 907–920 (2016).

    • Article
    • Google Scholar
  • 43.

    Ramirez-Cabral, N. Y., Kumar, L. & Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 7, 5910 (2017).

  • 44.

    Arthur, F. H., Morrison, W. R. III & Morey, A. C. Modeling the potential range expansion of larger grain borer, Prostephanus truncatus (Coleoptera: Bostrichidae). Sci. Rep. 9, 6862 (2019).

  • 45.

    Bacon, S. J., Aebi, A., Calanca, P. & Bacher, S. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Diversity Distrib. 20, 84–94 (2014).

    • Article
    • Google Scholar
  • 46.

    Hill, M. P. et al. Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol. Invasions 18, 1105–1119 (2016).

    • Article
    • Google Scholar
  • 47.

    Niemelä, P. & Mattson, W. J. Invasion of North American forests by European phytophagous insects. BioScience 46, 741–753 (1996).

    • Article
    • Google Scholar
  • 48.

    Yan, Y., Wang, Y. C., Feng, C. C., Wan, P. H. M. & Chang, K. T. T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 82, 83–92 (2017).

    • Article
    • Google Scholar
  • 49.

    Kenis, M., Rabitsch, W., Auger-Rozenberg, M. A. & Roques, A. How can alien species inventories and interception data help us prevent insect invasions? Bull. Entomol. Res. 97, 489–502 (2007).

  • 50.

    Liebhold, A. M., Work, T. T., McCullough, D. G. & Cavey, J. F. Airline baggage as a pathway for alien insect species invading the United States. Am. Entomologist 52, 48–54 (2006).

    • Article
    • Google Scholar
  • 51.

    Roques, A. Alien forest insects in a warmer world and a globalised economy: impacts of changes in trade, tourism and climate on forest biosecurity. New Zealand. J. Forestry Sci. 40(Suppl), S77–S94 (2010).

    • Google Scholar
  • 52.

    Liebhold, A. M., Brockerhoff, E. G., Garrett, L. J., Parke, J. L. & Britton, K. O. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10, 135–143 (2012).

    • Article
    • Google Scholar
  • 53.

    Bacon, S. J., Bacher, S. & Aebi, A. Gaps in border controls are related to quarantine alien insect invasions in Europe. PLoS ONE 7, e47689 (2012).

  • 54.

    Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

  • 55.

    Monfreda, C., Ramankutty, N., & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

  • 56.

    Van Damme, V. et al. Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. J. Pest Sci. 88, 533–541 (2015).

    • Article
    • Google Scholar
  • 57.

    Stockwell, D. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).

    • Article
    • Google Scholar
  • 58.

    Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

  • 59.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).

    • Article
    • Google Scholar
  • 60.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    • Article
    • Google Scholar
  • 61.

    Hosmer, D. W. Jr, Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression 398 (John Wiley & Sons, New Jersey, 2013).

    • Google Scholar
  • 62.

    Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Change Biol. 21, 2479–2487 (2015).

    • Article
    • Google Scholar
  • 63.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    • Article
    • Google Scholar
  • 64.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

  • 65.

    Stocker, T. F., et al. IPCC, 2013: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535 (2013).

  • 66.

    Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369 (2013).

    • Article
    • Google Scholar
  • 67.

    Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).

    • Article
    • Google Scholar
  • 68.

    Neuvonen S. & Virtanen T. Abiotic factors, climatic variability and forest insect pests. in Climate Change and Insect Pests (eds. Björklund, C. & Niemelä, P.) Chapter 9 (CAB International, Wallingford, 2015).

  • 69.

    Olatinwo, R. & Hoogenboom, G. Weather-based pest forecasting for efficient crop protection. in Integrated Pest Management, (ed Abrol, D. P.) 59–78 (Academic Press, San Diego, 2014).

  • 70.

    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

  • 71.

    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).

    • Article
    • Google Scholar
  • 72.

    Freeman, E. A. & Moisen, G. PresenceAbsence: an R package for presence absence analysis. J. Stat. Softw. 23, 31 (2008).

    • Article
    • Google Scholar
  • 73.

    Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).

  • 74.

    Dormann, C. F. et al. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    • Article
    • Google Scholar
  • 75.

    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

  • 76.

    Grünig M., et al. Code for pest and crops species distribution modelling (Version 1). Zenodo. https://doi.org/10.5281/zenodo.3746103 (2020).


  • Source: Ecology - nature.com

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards

    3 Questions: Harnessing wave power to rebuild islands