in

Cytochrome P450 metabolic resistance (CYP6P9a) to pyrethroids imposes a fitness cost in the major African malaria vector Anopheles funestus

  • Agnew P, Koella JC (1999) Life history interactions with environmental conditions in a host–parasite relationship and the parasite’s mode of transmission. Evol Ecol 13(1):67–91

    • Google Scholar
  • Alout H, Dabire RK, Djogbenou LS, Abate L, Corbel V, Chandre F et al. (2016) Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae. Sci Rep 6:29755

    • Google Scholar
  • Alout H, Yameogo B, Djogbenou LS, Chandre F, Dabire RK, Corbel V et al. (2014) Interplay between Plasmodium infection and resistance to insecticides in vector mosquitoes. J Infect Dis 210:1464–1470

    • Google Scholar
  • Amenya DA, Naguran R, Lo TC, Ranson H, Spillings BL, Wood OR et al. (2008) Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles Funestus, resistant to pyrethroids. Insect Mol Biol 17:19–25

    • Google Scholar
  • Amin A, White G (1984) Relative fitness of organophosphate-resistant and susceptible strains of Culex quinquefasciatus Say (Diptera: Culicidae). Bull Entomol Res 74:591–598

    • Google Scholar
  • Argentine J, Clark JM, Ferro D (1989) Relative fitness of insecticide-resistant Colorado potato beetle strains (Coleoptera: Chrysomelidae). Environ Entomol 18:705–710

    • Google Scholar
  • Assogba BS, Djogbenou LS, Milesi P, Berthomieu A, Perez J, Ayala D et al. (2015) An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito. Sci Rep 5:14529

    • Google Scholar
  • Berticat C, Boquien G, Raymond M, Chevillon C (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 79:41–47

    • Google Scholar
  • Bhatia S, Deobhankar R (1963) Reversion of dieldrin-resistance in the field population of A. culicifacies in Maharashtra State (erstwhile Bombay State), India. Indian J Malariol 17:339–351

    • Google Scholar
  • Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U et al. (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–211

    • Google Scholar
  • Bouvier JC, Bues R, Boivin T, Boudinhon L, Beslay D, Sauphanor B (2001) Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity 87:456–462

    • Google Scholar
  • Brewer MJ, Trumble JT (1991) Inheritance and fitness consequences of resistance to fenvalerate in Spodoptera exigua (Lepidoptera:Noctuidae). J Econ Entomol 84(6):1638–1644.

  • Brito LP, Linss JG, Lima-Camara TN, Belinato TA, Peixoto AA, Lima JB et al. (2013) Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE 8:e60878

    • Google Scholar
  • Charlesworth B (1994) Evolution in age-structured populations. Cambridge University Press, Cambridge

    • Google Scholar
  • Corbel V, N’Guessan R (2013) Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. In: Anopheles mosquitoes-new insights into malaria vectors. IntechOpen

  • de Montellano, PRO (2015) Substrate oxidation by cytochrome P450 enzymes. In Cytochrome P450. Springer, Cham, pp. 111–176

  • Edi CV, Djogbenou L, Jenkins AM, Regna K, Muskavitch MA, Poupardin R et al. (2014) CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet 10:e1004236

    • Google Scholar
  • Foster SP, Young S, Williamson MS, Duce I, Denholm I, Devine GJ (2003) Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies. Heredity 91:98–106

    • Google Scholar
  • Hamon J, Garrett-Jones C (1963) Resistance to insecticides in the major malaria vectors and its operational importance. Bull World Health Organ 28:1

    • Google Scholar
  • Hemingway J (2014) The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc Lond B Biol Sci 369:20130431

    • Google Scholar
  • Hunt R, Brooke B, Pillay C, Koekemoer L, Coetzee M (2005) Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus. Med Vet Entomol 19:271–275

    • Google Scholar
  • Ibrahim SS, Riveron JM, Bibby J, Irving H, Yunta C, Paine MJ et al. (2015) Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector. PLoS Genet 11:e1005618

    • Google Scholar
  • Irving H, Wondji CS (2017) Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa. BMC Genet 18:76

    • Google Scholar
  • Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S et al. (2013) Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallée du Kou, Burkina Faso. Gene 519:98–106

    • Google Scholar
  • Livak KJ (1984) Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 107:611–634

    • Google Scholar
  • Lyimo E, Takken W, Koella J (1992) Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomologia experimentalis et applicata 63:265–271

    • Google Scholar
  • Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL et al. (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7:179–184

    • Google Scholar
  • Martins AJ, Ribeiro CD, Bellinato DF, Peixoto AA, Valle D, Lima JB (2012) Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations. PLoS ONE 7:e31889

    • Google Scholar
  • McCarroll L, Hemingway J (2002) Can insecticide resistance status affect parasite transmission in mosquitoes? Insect Biochem Mol Biol 32:1345–1351

    • Google Scholar
  • Mebrahtu YB, Norem J, Taylor M (1997) Inheritance of larval resistance to permethrin in Aedes aegypti and association with sex ratio distortion and life history variation. Am J Trop Med Hyg 56:456–465

    • Google Scholar
  • Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG et al. (2012) Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci USA 109:6147–6152

    • Google Scholar
  • Morgan JC, Irving H, Okedi LM, Steven A, Wondji CS (2010) Pyrethroid resistance in an Anopheles funestus population from Uganda. PLoS ONE 5:e11872

    • Google Scholar
  • Okoye PN, Brooke BD, Koekemoer LL, Hunt RH, Coetzee M (2008) Characterisation of DDT, pyrethroid and carbamate resistance in Anopheles funestus from Obuasi, Ghana. Trans R Soc Trop Med Hyg 102:591–598

    • Google Scholar
  • Platt N, Kwiatkowska RM, Irving H, Diabaté A, Dabire R, Wondji CS (2015) Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae. Heredity 115:243

    • Google Scholar
  • Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH (2000) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 9:491–497

    • Google Scholar
  • Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27:91–98

    • Google Scholar
  • Reisen WK (1995) Effect of temperature on Culex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin valleys of California. J Med Entomol 32:636–645

    • Google Scholar
  • Rivero A, Vezilier J, weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6:e1001000

    • Google Scholar
  • Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. (2014) A single mutation in the GSTe2 geneallows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol 15:R27

  • Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJ et al. (2013) Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc Natl Acad Sci USA 110:252–257

    • Google Scholar
  • Riveron JM, Watsenga F, Irving H, Irish SR, Wondji CS (2018) High Plasmodium infection rate and reduced bed net efficacy in multiple insecticide-resistant malaria vectors in Kinshasa, Democratic Republic of Congo. J Infect Dis 217(2):320–328

  • Roush RT, Mckenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    • Google Scholar
  • Saavedra‐Rodriguez K, Suarez AF, Salas IF, Strode C, Ranson H, Hemingway J et al. (2012) Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect Mol Biol 21:61–77

    • Google Scholar
  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    • Google Scholar
  • Tchouakui M, Chiang M-C, Ndo C, Kuicheu CK, Amvongo-Adjia N, Wondji MJ et al. (2019) A marker of glutathione S-transferase-mediated resistance to insecticides is associated with higher Plasmodium infection in the African malaria vector Anopheles funestus. Sci Rep 9:5772

    • Google Scholar
  • Tchouakui M, Riveron JM, Djonabaye D, Tchapga W, Irving H, Takam PS et al. (2018) Fitness costs of the glutathione S-transferase epsilon 2 (L119F-GSTe2) mediated metabolic resistance to insecticides in the major African malaria vector Anopheles funestus. Genes 9:645

    • Google Scholar
  • Weedall GD, Mugenzi LM, Menze BD, Tchouakui M, Ibrahim SS, Amvongo-Adjia N et al. (2019) A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci Transl Med 11:eaat7386

    • Google Scholar
  • WHO (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces: report of the WHO informal consultation, WHO, Geneva

  • WHO (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Health Organization, Rep Ser

  • WHO (2018) World malaria report 2018

  • Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC (2011) Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol 41:484–491

    • Google Scholar

  • Source: Ecology - nature.com

    Chance and necessity in the pleiotropic consequences of adaptation for budding yeast

    How plants protect themselves from sun damage