in

Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias

  • 1.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Seebens, H., Gastner, M. T. & Blasius, B. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16, 782–790 (2013).

    CAS  PubMed  Google Scholar 

  • 4.

    Hooper, D. U., Chapin, F. S. III. & Ewel, J. J. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  • 5.

    Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).

    Google Scholar 

  • 6.

    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Google Scholar 

  • 7.

    Eitzel, M. V. et al. Citizen science terminology matters: exploring key terms. Citizen Sci. Theory Pract. 2, 1 (2017).

    Google Scholar 

  • 8.

    August, T. et al. Emerging technologies for biological recording. Biol. J. Linn. Soc. 115, 731–749 (2015).

    Google Scholar 

  • 9.

    Follett, R. & Strezov, V. An analysis of citizen science based research: usage and publication patterns. PLoS ONE 10, e0143687 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Pocock, M. J. O. et al. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13279 (2019).

    Article  Google Scholar 

  • 11.

    Mason, S. C. et al. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc. 115, 586–597 (2015).

    Google Scholar 

  • 12.

    Pearce-Higgins, J. W. et al. A national-scale assessment of climate change impacts on species: assessing the balance of risks and opportunities for multiple taxa. Biol. Conserv. https://doi.org/10.1016/j.biocon.2017.06.035 (2017).

    Article  Google Scholar 

  • 13.

    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).

    Google Scholar 

  • 15.

    Roy, H. E. et al. Invasive alien predator causes rapid declines of native European ladybirds. Divers. Distrib. 18, 717–725 (2012).

    Google Scholar 

  • 16.

    Liebenberg, L. et al. Smartphone Icon User Interface design for non-literate trackers and its implications for an inclusive citizen science. Biol. Conserv. 208, 155–162 (2017).

    Google Scholar 

  • 17.

    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).

    Google Scholar 

  • 18.

    Pocock, M. J. O., Roy, H. E., Preston, C. D. & Roy, D. B. The Biological Records Centre: a pioneer of citizen science. Biol. J. Linn. Soc. 115, 475–493 (2015).

    Google Scholar 

  • 19.

    Pocock, M. J. O., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Dennis, E. B., Morgan, B. J. T., Brereton, T. M., Roy, D. B. & Fox, R. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31, 1350–1361 (2017).

    PubMed  Google Scholar 

  • 21.

    Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Kelling, S. et al. Finding the signal in the noise of Citizen Science Observations. bioRxiv https://doi.org/10.1101/326314 (2018).

    Article  Google Scholar 

  • 23.

    Hill, M. O. Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol. Evol. 3, 195–205 (2012).

    Google Scholar 

  • 24.

    Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).

    Google Scholar 

  • 25.

    Roberge, J. M. Using data from online social networks in conservation science: Which species engage people the most on Twitter?. Biodivers. Conserv. 23, 715–726 (2014).

    Google Scholar 

  • 26.

    Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).

    Google Scholar 

  • 27.

    Barata, I. M., Griffiths, R. A. & Ridout, M. S. The power of monitoring: optimizing survey designs to detect occupancy changes in a rare amphibian population. Sci. Rep. 7, 16491 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Johnston, A., Fink, D., Hochachka, W. M. & Kelling, S. Estimates of observer expertise improve species distributions from citizen science data. Methods Ecol. Evol. 2017, 1–10 (2017).

    Google Scholar 

  • 30.

    Boersch-Supan, P. H., Trask, A. E. & Baillie, S. R. Robustness of simple avian population trend models for semi-structured citizen science data is species-dependent. Biol. Conserv. 240, 108286 (2019).

    Google Scholar 

  • 31.

    Farmer, R. G., Leonard, M. L., Mills Flemming, J. E. & Anderson, S. C. Observer aging and long-term avian survey data quality. Ecol. Evol. 4, 2563–2576 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Horns, J. J., Adler, F. R. & Şekercioğlu, ÇH. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 221, 151–159 (2018).

    Google Scholar 

  • 33.

    Aagaard, K., Lyons, J. E. & Thogmartin, W. E. Accounting for surveyor effort in large-scale monitoring programs. J. Fish Wildl. Manag. 9, 459–466 (2018).

    Google Scholar 

  • 34.

    Neyens, T. et al. Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. Sci. Rep. 9, 19122 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Ponciano, L. & Brasileiro, F. Finding volunteers’ engagement profiles in human computation for citizen science projects. Hum. Comput. 1, 245–264 (2014).

    Google Scholar 

  • 36.

    O’Brien, H. L. & Toms, E. G. What is user engagement? A conceptual framework for defining user engagement with technology. J. Am. Soc. Inf. Sci. Technol. 59, 938–955 (2008).

    Google Scholar 

  • 37.

    Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Nov, O., Arazy, O. & Anderson, D. Scientists@Home: what drives the quantity and quality of online citizen science participation?. PLoS ONE 9, e90375 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 39.

    West, S. & Pateman, R. Recruiting and retaining participants in citizen science: what can be learned from the volunteering literature?. Citiz. Sci. Theory Pract. https://doi.org/10.5334/cstp.8 (2016).

    Article  Google Scholar 

  • 40.

    Aristeidou, M., Scanlon, E. & Sharples, M. Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017).

    Google Scholar 

  • 41.

    Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Google Scholar 

  • 42.

    Dolnicar, S., Grabler, K. & Mazanec, J. A. A tale of three cities: perceptual charting for analysing destination images. In Consumer psychology of tourism, hospitality and leisure (ed. Woodside) 39–62 (CABI, London, 1999).

    Google Scholar 

  • 43.

    Struyf, A., Hubert, M. & Rousseeuw, P. Clustering in an object-oriented environment. J. Stat. Softw. 1, 1–30 (1996).

    Google Scholar 

  • 44.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

    Google Scholar 

  • 45.

    Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.5-1 (2018).

  • 46.

    Maechler, M. et al. Cluster Analysis Basics and Extensions. R package version 2.0.7-1. R package version (2018).

  • 47.

    Wood, C., Sullivan, B., Iliff, M., Fink, D. & Kelling, S. eBird: engaging birders in science and conservation. PLoS Biol. 9(12), e1001220. https://doi.org/10.1371/journal.pbio.1001220 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Haklay, M. Why is participation inequality important? In European Handbook of Crowdsourced Geographic Information. https://doi.org/10.5334/bax.c (2016).

  • 49.

    Seymour, V. & Haklay, M. Exploring engagement characteristics and behaviours of environmental volunteers. Citiz. Sci. Theory Pract. https://doi.org/10.5334/cstp.66 (2017).

    Article  Google Scholar 

  • 50.

    August, T. A. et al. Citizen meets social science: predicting volunteer involvement in a global freshwater monitoring experiment. Freshw. Sci. https://doi.org/10.1086/703416 (2019).

    Article  Google Scholar 

  • 51.

    Gura, T. Citizen science: amateur experts. Nature https://doi.org/10.1038/nj7444-259a (2013).

    Article  PubMed  Google Scholar 

  • 52.

    Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves?. PLoS ONE 10, e0139600 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    van Strien, A. J., van Swaay, C. A. M. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).

    Google Scholar 

  • 54.

    Telfer, M. G., Preston, C. D. & Rothery, P. A general method for measuring relative change in range size from biological atlas data. Biol. Conserv. 107, 99–109 (2002).

    Google Scholar 

  • 55.

    Shirk, J. L. et al. Public participation in scientific research: a framework for deliberate design. Ecol. Soc. https://doi.org/10.5751/ES-04705-170229 (2012).

    Article  Google Scholar 

  • 56.

    Domroese, M. C. & Johnson, E. A. Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project. Biol. Conserv. 208, 40–47 (2017).

    Google Scholar 

  • 57.

    Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding Motivations for Citizen Science. Final report on behalf of UKEOF, University of Reading, Stockholm Environment Institute (University of York) and University of the West of England (2016).


  • Source: Ecology - nature.com

    Solarizing networks

    Light limitation regulates the response of autumn terrestrial carbon uptake to warming