in

Defining variation in pre-human ecosystems can guide conservation: An example from a Caribbean coral reef

  • 1.

    Cramer, K. L., Jackson, J. B. C., Angioletti, C. V., Leonard-Pingel, J. & Guilderson, T. P. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching. Ecol. Lett. 15, 561–567 (2012).

    • Article
    • Google Scholar
  • 2.

    Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, V. V. Status and trends of Caribbean coral reefs. Gland: Global Coral Reef Monitoring Network, IUCN. (2014).

  • 3.

    Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6, e54 (2008).

  • 4.

    Schutte, V. G. W., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Marine Ecology Progress Series 402, 115–122 (2010).

  • 5.

    Jackson, J. B. C. Reefs since Columbus. Coral Reefs 16, S23–S32 (1997).

    • Article
    • Google Scholar
  • 6.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

  • 7.

    Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology & Evolution 28, 149–155 (2013).

    • Article
    • Google Scholar
  • 8.

    Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. Biol. Sci. 283, (2016).

  • 9.

    Pickett, S. T. A. Space-for-Time Substitution as an Alternative to Long-Term Studies. Long-Term Studies in Ecology 110–135, https://doi.org/10.1007/978-1-4615-7358-6_5 (1989).

  • 10.

    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl. Acad. Sci. U. S. A 110, 9374–9379 (2013).

  • 11.

    Bruno, J. F., Precht, W. F., Vroom, P. S. & Aronson, R. B. Coral reef baselines: how much macroalgae is natural? Mar. Pollut. Bull. 80, 24–29 (2014).

  • 12.

    Keane, R. E., Hessburg, P. F., Landres, P. B. & Swanson, F. J. The use of historical range and variability (HRV) in landscape management. For. Ecol. Manage. 258, 1025–1037 (2009).

    • Article
    • Google Scholar
  • 13.

    Higgs, E. et al. The changing role of history in restoration ecology. Front. Ecol. Environ. 12, 499–506 (2014).

    • Article
    • Google Scholar
  • 14.

    O’Dea, A., Dillon, E. M., Altieri, A. H. & Lepore, M. L. Look to the past for an optimistic future. Conserv. Biol. 31, 1221–1222 (2017).

    • Article
    • Google Scholar
  • 15.

    Symstad, A. J. & Jonas, J. L. Using Natural Range of Variation to Set Decision Thresholds: A Case Study for Great Plains Grasslands. In Application of Threshold Concepts in Natural Resource Decision Making, 131–156 (2014).

  • 16.

    Pandolfi, J. M. & Jackson, J. B. C. Ecological persistence interrupted in Caribbean coral reefs. Ecol. Lett. 9, 818–826 (2006).

    • Article
    • Google Scholar
  • 17.

    Aronson, R. B. & Precht, W. F. Stasis, biological disturbance, and community structure of a Holocene coral reef. Paleobiology 23, 326–346 (1997).

    • Article
    • Google Scholar
  • 18.

    Fredston-Hermann, A. L., O’Dea, A., Rodriguez, F., Thompson, W. G. & Todd, J. A. Marked Ecological Shifts in Seagrass and Reef Molluscan Communities Since the Mid-Holocene in the Southwestern Caribbean. Bull. Mar. Sci. 89, 983–1002 (2013).

    • Article
    • Google Scholar
  • 19.

    Cramer, K. L., O’Dea, A., Carpenter, C. & Norris, R. D. A 3000 year record of Caribbean reef urchin communities reveals causes and consequences of long-term decline in Diadema antillarum. Ecography 41, 164–173 (2017).

    • Article
    • Google Scholar
  • 20.

    Cramer, K. L., O’Dea, A., Clark, T. R., Zhao, J.-X. & Norris, R. D. Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nat. Commun. 8, 14160 (2017).

  • 21.

    Lin, C.-H. et al. Reconstructing reef fish communities using fish otoliths in coral reef sediments. PLoS One 14, e0218413 (2019).

  • 22.

    Dillon, E. M., Norris, R. D. & O’Dea, A. Dermal denticles as a tool to reconstruct shark communities. Mar. Ecol. Prog. Ser. 566, 117–134 (2017).

  • 23.

    Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. In The Ecology and Etiology of Newly Emerging Marine Diseases, 25–38 (2001).

  • 24.

    Łukowiak, M. et al. Historical change in a Caribbean reef sponge community and long-term loss of sponge predators. Mar. Ecol. Prog. Ser. 601, 127–137 (2018).

  • 25.

    Kowalewski, M. The youngest fossil record and conservation biology: Holocene shells as eco-environmental recorders. Conservation Paleobiology: Science and Practice, 7–29 (2017).

  • 26.

    Toscano, M. A., Gonzalez, J. L. & Whelan, K. R. T. Calibrated density profiles of Caribbean mangrove peat sequences from computed tomography for assessment of peat preservation, compaction, and impacts on sea-level reconstructions. Quaternary Research 89, 201–222 (2018).

  • 27.

    Aronson, R. B., Hilbun, N. L., Bianchi, T. S., Filley, T. R. & McKee, B. A. Land use, water quality, and the history of coral assemblages at Bocas del Toro, Panamá. Marine Ecology Progress Series 504, 159–170 (2014).

  • 28.

    Darling, E. S. et al. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

    • Article
    • Google Scholar
  • 29.

    Darling, E. S. et al. Social-environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat Ecol Evol 3, 1341–1350 (2019).

    • Article
    • Google Scholar
  • 30.

    Seemann, J., Yingst, A., Stuart-Smith, R. D., Edgar, G. J. & Altieri, A. H. The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama. PeerJ 6, e4455 (2018).

  • 31.

    Cramer, K. L. History of Human Occupation and Environmental Change in Western and Central Caribbean Panama. Bulletin of Marine Science 89, 955–982 (2013).

    • Article
    • Google Scholar
  • 32.

    Seemann, J. et al. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ. Monit. Assess. 186, 1747–1763 (2013).

  • 33.

    Graniero, L. E., Grossman, E. L. & O’Dea, A. Stable isotopes in bivalves as indicators of nutrient source in coastal waters in the Bocas del Toro Archipelago, Panama. PeerJ 4, e2278 (2016).

  • 34.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. U. S. A 114, 3660–3665 (2017).

  • 35.

    Johnson, M. D., Rodriguez, L. M. & Altieri, A. H. Shallow-water hypoxia and mass mortality on a Caribbean coral reef. Bulletin of Marine Science 94, 143–144 (2018).

    • Article
    • Google Scholar
  • 36.

    Greer, L. & Swart, P. K. Decadal cyclicity of regional mid-Holocene precipitation: Evidence from Dominican coral proxies. Paleoceanography 21, (2006).

  • 37.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

  • 38.

    Rodriguez, L. G. et al. Mid-Holocene, Coral-Based Sea Surface Temperatures in the Western Tropical Atlantic. Paleoceanography and Paleoclimatology 34, 1234–1245 (2019).

    • Article
    • Google Scholar
  • 39.

    Giry, C. et al. Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth and Planetary Science Letters 331-332, 187–200 (2012).

  • 40.

    Khan, N. S. et al. Drivers of Holocene sea-level change in the Caribbean. Quaternary Science Reviews 155, 13–36 (2017).

  • 41.

    Toscano, M. A. & Macintyre, I. G. Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22, 257–270 (2003).

    • Article
    • Google Scholar
  • 42.

    Blanchon, P. et al. Retrograde Accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise. Frontiers in Earth Science 5 (2017).

  • 43.

    Moreno-Mayar, J. V. et al. Early human dispersals within the Americas. Science 362 (2018).

  • 44.

    Cooke, R. G., Sánchez-Herrera, L. A., Smith-Guzmán, N. & Lara Kraudy, A. Panama Precolombino. In Nueva Historia General de Panamá (ed. Calvo, C.) 1, 48–67 (Comisión 500 Años de Fundación de la Ciudad de Panamá, Phoenix Design Aid A/S, 2019).

  • 45.

    Linares, O. F. Adaptive strategies in western Panama. World Archaeology 8, 304–319 (1977).

    • Article
    • Google Scholar
  • 46.

    Wake, T. A., Doughty, T. A. & Kay, M. Archaeological investigations provide Late Holocene baseline ecological data for Bocas del Toro, Panama. Bull. Mar. Sci., https://doi.org/10.5343/bms.2012.1066 (2013).

  • 47.

    Baldi, N. F. Explotación temprana de recursos costeros en el sitio Black Creek (4000 – 2500 A.P.) caribe sur de Costa Rica. Revista de Arqueologia Americana 29, 85–121 (2011).

    • Google Scholar
  • 48.

    Sider, M. N. G., Gudnitz Sider, M. N. & Collins, L. S. Pristine to Modern: a Comparison of Shallow-Water Modern and Mid-Holocene Benthic Foraminiferal Assemblages from Coastal Bocas Del Toro, Panama. https://doi.org/10.1130/abs/2019am-339802 (2019).

  • 49.

    Sider, M. N., Florida International University, Collins, L. S. & O’Dea, A. Benthic Foraminiferal Facies of a Caribbean, Mid-Holocene Coral Reef, Isla Colon, Bocas Del Toro, Panama, https://doi.org/10.1130/abs/2016am-286844 (2016).

  • 50.

    Chan, B.-L. M., Muñoz, N.-H., Lepore, M. & O’Dea, A. Caribbean Coral Skeleton Identification Guide. Caribbean Coral Skeleton Identification Guide, https://doi.org/10.5281/zenodo.1117236 (2016).

  • 51.

    Veron, J. E. N. Corals of the world. (Sea Challengers, 2000).

  • 52.

    Oksanen, J. et al. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Vegan: Community Ecology Package. (2018).

  • 53.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (2002).

  • 54.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).

  • 55.

    R. Core Team. An Introduction to R. (Samurai Media Limited, 2015).

  • 56.

    Aronson, R. B., Macintyre, I. G., Wapnick, C. M. & O’Neill, M. W. Phase shifts, alternative states, and the unprecedented convergence of two reef systems. Ecology 85, 1876–1891 (2004).

  • 57.

    Roff, G. Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Marine Geology 419, 106065 (2020).

  • 58.

    Clark, T. R. et al. Testing the precision and accuracy of the U–Th chronometer for dating coral mortality events in the last 100 years. Quat. Geochronol. 23, 35–45 (2014).

    • Article
    • Google Scholar
  • 59.

    Kidwell, S. M., Best, M. M. R. & Kaufman, D. S. Taphonomic trade-offs in tropical marine death assemblages: Differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33, 729 (2005).

  • 60.

    Kosnik, M. A., Hua, Q., Kaufman, D. S. & Wüst, R. A. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 35, 565–586 (2009).

    • Article
    • Google Scholar
  • 61.

    Hubbard, D. K. Depth-Related and Species-Related Patterns of Holocene Reef Accretion in the Caribbean and Western Atlantic: A Critical Assessment of Existing Models. Perspectives in Carbonate Geology 1–18, https://doi.org/10.1002/9781444312065.ch1 (2012).

  • 62.

    Cramer, K. L., O’Dea, A., Leonard-Pingel, J. S. & Norris, R. D. Millennial-scale change in the structure of a Caribbean reef ecosystem and the role of human and natural disturbance. Ecography, https://doi.org/10.1111/ecog.04722 (2019).

  • 63.

    Bakker, D. M., Duyl, F. C., Perry, C. T. & Meesters, E. H. Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. Global Change Biology 25, 4092–4104 (2019).

  • 64.

    Renema, W. et al. Are coral reefs victims of their own past success? Sci. Adv. 2, e1500850 (2016).

  • 65.

    Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715 (2016).

    • Article
    • Google Scholar
  • 66.

    Edmunds, P. J. et al. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS One 9, e107525 (2014).

  • 67.

    Guzmán, H. M. & Guevara, C. A. Arrecifes coralinos de Bocas del Toro, Panamá: distribución, estructura y estado de conservación de los arrecifes continentales de la Laguna de Chiriquí y la Bahía Almirante. Rev. Biol. Trop. 46, 601–623 (1998).

    • Google Scholar
  • 68.

    Aronson, R. B., Precht, W. F. & Macintyre, I. G. Extrinsic control of species replacement on a Holocene reef in Belize: the role of coral disease. Coral Reefs 17, 223–230 (1998).

    • Article
    • Google Scholar
  • 69.

    Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a Pleistocene perspective. Coral Reefs 17, 249–261 (1998).

    • Article
    • Google Scholar
  • 70.

    Precht, W. F. et al. Non-Random Timing of Ecological Shifts on Caribbean Coral Reefs Suggests Regional Causes of Change. https://doi.org/10.1101/672121 (2019).

  • 71.

    Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS One 3, e3718 (2008).

  • 72.

    O’Dea, A., Shaffer, M. L., Doughty, D. R., Wake, T. A. & Rodriguez, F. A. Evidence of size-selective evolution in the fighting conch from prehistoric subsistence harvesting. Proc. Biol. Sci. 281, 20140159 (2014).

  • 73.

    Li, A. & Reidenbach, M. A. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef. Coral Reefs 33, 847–861 (2014).

  • 74.

    D’Croz, L., Rosario, J. B. D. & Gondola, P. The Effect of Fresh Water Runoff on the Distribution of Dissolved Inorganic Nutrients and Plankton in the Bocas Del Toro Archipelago, Caribbean Panamá. Caribb. J. Sci. 41, 414–429 (2005).

    • Google Scholar
  • 75.

    Guest, J. R. et al. A framework for identifying and characterising coral reef ‘oases’ against a backdrop of degradation. J. Appl. Ecol., https://doi.org/10.1111/1365-2664.13179 (2018).

  • 76.

    Huntington, B. E., Miller, M. W., Pausch, R. & Richter, L. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition. Oecologia 184, 247–257 (2017).

  • 77.

    Ladd, M. C., Shantz, A. A., Nedimyer, K. & Burkepile, D. E. Density Dependence Drives Habitat Production and Survivorship of Acropora cervicornis Used for Restoration on a Caribbean Coral Reef. Frontiers in Marine Science 3, (2016).

  • 78.

    Birkeland, C. Biology Trumps Management: Feedbacks and Constraints of Life-History Traits. In Coral Reefs in the Anthropocene, 231–263 (2015).

  • 79.

    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

  • 80.

    Cannon, S. E., Donner, S. D., Fenner, D. & Beger, M. The relationship between macroalgae taxa and human disturbance on central Pacific coral reefs. Marine Pollution Bulletin 145, 161–173 (2019).

  • 81.

    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

  • 82.

    Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: embracing new futures. Current Opinion in Environmental Sustainability 7, 9–14 (2014).

    • Article
    • Google Scholar
  • 83.

    Webster, M. S. et al. Who Should Pick the Winners of Climate Change? Trends Ecol. Evol. 32, 167–173 (2017).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields

    Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation