in

Deglacial to Holocene variability in surface water characteristics and major floods in the Beaufort Sea

  • 1.

    Serreze, M. C., Holland, M. M. & Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315, 1533–1536 (2007).

    CAS  Article  Google Scholar 

  • 2.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  Article  Google Scholar 

  • 3.

    Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121–133 (2019).

    Article  CAS  Google Scholar 

  • 4.

    Kim, K. et al. Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep. 9, 1184 (2019).

    Article  CAS  Google Scholar 

  • 5.

    Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).

    CAS  Article  Google Scholar 

  • 6.

    Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).

    Article  Google Scholar 

  • 7.

    Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Chang. 7, 604–610 (2017).

    Article  Google Scholar 

  • 8.

    Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34, L09501 (2007).

    Article  Google Scholar 

  • 9.

    Routson, C. C. et al. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 83–87 (2019).

    CAS  Article  Google Scholar 

  • 10.

    Parkinson, C. L. & Cavalieri, D. J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07003 (2008).

    Article  Google Scholar 

  • 11.

    Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012).

    Article  Google Scholar 

  • 12.

    Matsumura, S. & Kosaka, Y. Arctic–Eurasian climate linkage induced by tropical ocean variability. Nat. Commun. 10, 1–8 (2019).

    CAS  Article  Google Scholar 

  • 13.

    Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0-180°W). Quat. Sci. Rev. 23, 529–560 (2004).

    Article  Google Scholar 

  • 14.

    Holmes, R. M. et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean. Global Biogeochem. Cycles 16, 1098 (2002).

    Article  CAS  Google Scholar 

  • 15.

    Duk-Rodkin, A. & Hughes, O. L. Tertiary-quaternary drainage of the pre-glacial Mackenzie basin. Quat. Int. 22–23, 221–241 (1994).

    Article  Google Scholar 

  • 16.

    McManus, J. F., Francois, R., Gherardl, J. M., Keigwin, L. & Drown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    CAS  Article  Google Scholar 

  • 17.

    Peltier, W. R., Vettoretti, G. & Stastna, M. Atlantic meridional overturning and climate response to Arctic Ocean freshening. Geophys. Res. Lett. 33, L06713 (2006).

    Google Scholar 

  • 18.

    Broecker, W. S. et al. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, 318–321 (1989).

    Article  Google Scholar 

  • 19.

    Keigwin, L. D. et al. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling. Nat. Geosci. 11, 599–604 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Leydet, D. J. et al. Opening of glacial Lake Agassiz’s eastern outlets by the start of the Younger Dryas cold period. Geology 46, 155–158 (2018).

    CAS  Article  Google Scholar 

  • 21.

    Fisher, T. G. & Lowell, T. V. Testing northwest drainage from Lake Agassiz using extant ice margin and strandline data. Quat. Int. 260, 106–114 (2012).

    Article  Google Scholar 

  • 22.

    Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662–665 (2005).

    CAS  Article  Google Scholar 

  • 23.

    Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).

    CAS  Article  Google Scholar 

  • 24.

    Fisher, T. G., Waterson, N., Lowell, T. V. & Hajdas, I. Deglaciation ages and meltwater routing in the Fort McMurray region, northeastern Alberta and northwestern Saskatchewan, Canada. Quat. Sci. Rev. 28, 1608–1624 (2009).

    Article  Google Scholar 

  • 25.

    Fisher, T. G., Smith, D. G. & Andrews, J. T. Preboreal oscillation caused by a glacial Lake Agassiz flood. Quat. Sci. Rev. 21, 873–878 (2002).

    Article  Google Scholar 

  • 26.

    Jin, Y. K. ARA04C cruise report: barrow, US—Beaufort Sea, CAN—Nome, US 6-24 September 2013 (Korea Polar Research Institute, Incheon, 2013).

  • 27.

    Gamboa, A., Montero-Serrano, J. -C., St-Onge, G., Rochon, A. & Desiage, P. -A. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic). Geochem. Geophys. Geosyst. 18, 488–512 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Belt, S. T. et al. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16–27 (2007).

    CAS  Article  Google Scholar 

  • 29.

    Brown, T. A., Belt, S. T., Tatarek, A. & Mundy, C. J. Source identification of the Arctic sea ice proxy IP 25. Nat. Commun. 5, 4197 (2014).

    CAS  Article  Google Scholar 

  • 30.

    Müller, J. et al. Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet. Sci. Lett. 306, 137–148 (2011).

    Article  CAS  Google Scholar 

  • 31.

    Smik, L., Cabedo-Sanz, P. & Belt, S. T. Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: A further development of the PIP25 index. Org. Geochem. 92, 63–69 (2016).

    CAS  Article  Google Scholar 

  • 32.

    Lü, X. et al. Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a paleotemperature proxy for mid-to-low latitude marginal seas. Org. Geochem. 89, 31–43 (2015).

    Article  CAS  Google Scholar 

  • 33.

    Volkman, J. K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9, 83–99 (1986).

    CAS  Article  Google Scholar 

  • 34.

    Fahl, K. & Stein, R. Biomarkers as organic-carbon-source and environmental indicators in the late quaternary Arctic Ocean: problems and perspectives. Mar. Chem. 63, 293–309 (1999).

    CAS  Article  Google Scholar 

  • 35.

    Fahl, K. & Stein, R. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: new insights from biomarker proxy records. Earth Planet. Sci. Lett. 351, 123–133 (2012).

    Article  CAS  Google Scholar 

  • 36.

    Rampen, S. W., Abbas, B. A., Schouten, S. & Damsté, J. S. S. A comprehensive study of sterols in marine diatoms (Bacillariophyta): implications for their use as tracers for diatom productivity. Limnol. Oceanogr. 55, 91–105 (2010).

    CAS  Article  Google Scholar 

  • 37.

    Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).

    CAS  Article  Google Scholar 

  • 38.

    Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C. & Sinninghe Damsté, J. S. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71, 703–713 (2007).

    CAS  Article  Google Scholar 

  • 39.

    Blaga, C. I. et al. Branched glycerol dialkyl glycerol tetraethers in lake sediments: can they be used as temperature and pH proxies? Org. Geochem. 41, 1225–1234 (2010).

    CAS  Article  Google Scholar 

  • 40.

    De Jonge, C. et al. In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim. Cosmochim. Acta 125, 476–491 (2014).

    Article  CAS  Google Scholar 

  • 41.

    Zhang, Z., Metzger, P. & Sachs, J. P. Co-occurrence of long chain diols, keto-ols, hydroxy acids and keto acids in recent sediments of Lake El Junco, Galápagos Islands. Org. Geochem. 42, 823–837 (2011).

    CAS  Article  Google Scholar 

  • 42.

    de Bar, M. W. et al. Constraints on the application of long chain diol proxies in the Iberian Atlantic margin. Org. Geochem. 101, 184–195 (2016).

    Article  CAS  Google Scholar 

  • 43.

    Lattaud, J. et al. The C32 alkane-1,15-diol as a proxy of late Quaternary riverine input in coastal margins. Clim. Past 13, 1049–1061 (2017).

    Article  Google Scholar 

  • 44.

    Lattaud, J. et al. The C32 alkane-1,15-diol as a tracer for riverine input in coastal seas. Geochim. Cosmochim. Acta 202, 146–158 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Pico, T., Mitrovica, J. X. & Mix, A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Sci. Adv. 6, eaay2935 (2020).

    CAS  Article  Google Scholar 

  • 46.

    Jakobsson, M. et al. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records. Clim. Past 13, 991–1005 (2017).

    Article  Google Scholar 

  • 47.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  • 48.

    Niebauer, H. J. & Alexander, V. Oceanographic frontal structure and biological production at an ice edge. Cont. Shelf Res. 4, 367–388 (1985).

    Article  Google Scholar 

  • 49.

    Smith, W. O. & Nelson, D. M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science. 227, 163–166 (1985).

    CAS  Article  Google Scholar 

  • 50.

    Ackley, S. F. & Sullivan, C. W. Physical controls on the development and characteristics of Antarctic sea ice biological communities-a review and synthesis. Deep Sea Res. I 41, 1583–1604 (1994).

    Article  Google Scholar 

  • 51.

    Strass, V. H. & Nöthig, E. M. Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol. 16, 409–422 (1996).

    Article  Google Scholar 

  • 52.

    Collins, L. G. et al. Evaluating highly branched isoprenoid (HBI) biomarkers as a novel Antarctic sea-ice proxy in deep ocean glacial age sediments. Quat. Sci. Rev. 79, 87–98 (2013).

    Article  Google Scholar 

  • 53.

    Belt, S. T. et al. Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet. Sci. Lett. 431, 127–139 (2015).

    CAS  Article  Google Scholar 

  • 54.

    Smik, L., Belt, S. T., Lieser, J. L., Armand, L. K. & Leventer, A. Distributions of highly branched isoprenoid alkenes and other algal lipids in surface waters from East Antarctica: further insights for biomarker-based paleo sea-ice reconstruction. Org. Geochem. 95, 71–80 (2016).

    CAS  Article  Google Scholar 

  • 55.

    Ribeiro, S. et al. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies. Ambio 46, 106–118 (2017).

    CAS  Article  Google Scholar 

  • 56.

    Wagner, A., Lohmann, G. & Prange, M. Arctic river discharge trends since 7ka BP. Glob. Planet. Change 79, 48–60 (2011).

    Article  Google Scholar 

  • 57.

    North Greenland Ice Core Project Members. High resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  CAS  Google Scholar 

  • 58.

    Broecker, W. S. Was the Younger Dryas triggered by a flood? Science 312, 1146–1148 (2006).

    CAS  Article  Google Scholar 

  • 59.

    Not, C. & Hillaire-Marcel, C. Enhanced sea-ice export from the Arctic during the Younger Dryas. Nat. Commun. 3, 1–5 (2012).

    Article  CAS  Google Scholar 

  • 60.

    Fagel, N., Not, C., Gueibe, J., Mattielli, N. & Bazhenova, E. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge. Quat. Sci. Rev. 92, 140–154 (2014).

    Article  Google Scholar 

  • 61.

    Scott, D. B., Schell, T., St-Onge, G., Rochon, A. & Blasco, S. Foraminiferal assemblage changes over the last 15,000 years on the Mackenzie-Beaufort Sea Slope and Amundsen Gulf, Canada: implications for past sea ice conditions. Paleoceanography 24, PA2219 (2009).

    Article  Google Scholar 

  • 62.

    Keigwin, L. D., Donnelly, J. P., Cook, M. S., Driscoll, N. W. & Brigham-Grette, J. Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology 34, 861–864 (2006).

    Article  Google Scholar 

  • 63.

    Hill, J. C. & Driscoll, N. W. Paleodrainage on the Chukchi shelf reveals sea level history and meltwater discharge. Mar. Geol. 254, 129–151 (2008).

    CAS  Article  Google Scholar 

  • 64.

    England, J. H. & Furze, M. F. A. New evidence from the western Canadian Arctic Archipelago for the resubmergence of Bering Strait. Quat. Res. 70, 60–67 (2008).

    CAS  Article  Google Scholar 

  • 65.

    Dyke, A. S. & Savelle, J. M. Holocene history of the Bering Sea bowhead whale (Balaena mysticetus) in its Beaufort Sea summer grounds off Southwestern Victoria Island, Western Canadian Arctic. Quat. Res. 55, 371–379 (2001).

    Article  Google Scholar 

  • 66.

    Dyke, A. S., Dale, J. E. & McNeely, R. N. Marine molluscs as indicators of environmental change in glaciated North America and greenland during the last 18 000 Years. Geogr. Phys. Quat. 50, 125–184 (1996).

    Google Scholar 

  • 67.

    Belt, S. T., Smik, L., Köseoglu, D., Knies, J. & Husum, K. A novel biomarker-based proxy for the spring phytoplankton bloom in Arctic and sub-arctic settings–HBI T25. Earth Planet. Sci. Lett. 523, 115703 (2019).

    CAS  Article  Google Scholar 

  • 68.

    Fietz, S., Huguet, C., Rueda, G., Hambach, B. & Rosell-Melé, A. Hydroxylated isoprenoidal GDGTs in the Nordic Seas. Mar. Chem. 152, 1–10 (2013).

    CAS  Article  Google Scholar 

  • 69.

    Klotsko, S., Driscoll, N. & Keigwin, L. Multiple meltwater discharge and ice rafting events recorded in the deglacial sediments along the Beaufort Margin, Arctic Ocean. Quat. Sci. Rev. 203, 185–208 (2019).

    Article  Google Scholar 

  • 70.

    Sachs, J. P. et al. An Arctic Ocean paleosalinity proxy from δ2H of palmitic acid provides evidence for deglacial Mackenzie River flood events. Quat. Sci. Rev. 198, 76–90 (2018).

    Article  Google Scholar 

  • 71.

    Spielhagen, R. F., Erlenkeuser, H. & Siegert, C. History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation. Glob. Planet. Change 48, 187–207 (2005).

    Article  Google Scholar 

  • 72.

    Nørgaard-pedersen, N. et al. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography 18, 1–19 (2003).

    Article  Google Scholar 

  • 73.

    Stein, R. et al. The last deglaciation event in the eastern central Arctic. Ocean Sci. 264, 692–696 (1994).

    CAS  Google Scholar 

  • 74.

    Poore, R. Z., Osterman, L., Hole, W. & Hole, W. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27, 759–762 (1999).

    CAS  Article  Google Scholar 

  • 75.

    Stein, R., Fahl, K. & Müller, J. Proxy reconstruction of Cenozoic Arctic Ocean sea ice history–from IRD to IP25. Polarforschung 82, 37–71 (2012).

    Google Scholar 

  • 76.

    Häggi, C. et al. Modern and late Pleistocene particulate organic carbon transport by the Amazon River: Insights from long-chain alkyl diols. Geochim. Cosmochim. Acta 262, 1–19 (2019).

    Article  CAS  Google Scholar 

  • 77.

    Breckenridge, A. The Tintah-Campbell gap and implications for glacial Lake Agassiz drainage during the Younger Dryas cold interval. Quat. Sci. Rev. 117, 124–134 (2015).

    Article  Google Scholar 

  • 78.

    Praetorius, S. et al. The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 6, eaay2915 (2020).

    Article  Google Scholar 

  • 79.

    Boden, P., Fairbanks, G., Wright, D. & Burckle, H. High-resolution stable isotope records from southwest Sweden: the drainage of the Baltic Ice Lake and Younger Dryas ice margin oscillations. Paleoceanography 12, 39–49 (1997).

    Article  Google Scholar 

  • 80.

    Schell, T. M., Scott, D. B., Rochon, A. & Blasco, S. Late quaternary paleoceanography and paleo-sea ice conditions in the Mackenzie Trough and Canyon, Beaufort Sea. Can. J. Earth Sci. 45, 1399–1415 (2008).

    Article  Google Scholar 

  • 81.

    Andrews, J. T. & Dunhill, G. Early to mid-Holocene Atlantic water influx and deglacial meltwater events, Beaufort Sea slope, Arctic Ocean. Quat. Res. 61, 14–21 (2004).

    CAS  Article  Google Scholar 

  • 82.

    Winterfeld, M. et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost. Nat. Commun. 9, 3666 (2018).

    Article  CAS  Google Scholar 

  • 83.

    Meyer, V. D. et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming. Environ. Res. Lett. 14, 085003 (2019).

    CAS  Article  Google Scholar 

  • 84.

    Stein, R., Fahl, K., Dittmers, K., Nissen, F. & Stepanets, O. V. Holocene siliciclastic and organic carbon fluxes in the Oh and Yenisei estuaries and the adjacent inner Kara Sea: Quantification, variability, and paleoenvironmental implications. In Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability and Environmental Significance 401–432 (Elsevier, Amsterdam, 2003).

  • 85.

    Stein, R. & Fahl, K. The Kara Sea: distribution, sources, variability and burial of organic carbon. in The Organic Carbon Cycle in the Arctic Ocean 213–237 (Springer-Verlag, Berlin, 2004). .

  • 86.

    Pearce, C. et al. Heinrich 0 on the east Canadian margin: source, distribution, and timing. Paleoceanography 30, 1613–1624 (2015).

    Article  Google Scholar 

  • 87.

    Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6, 457–474 (2011).

    Google Scholar 

  • 88.

    Blaauw, M. & Christen, J. A. Bacon Manual—v2.3.3 (2013).

  • 89.

    Reimer, P. J. et al. Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal Bp. Radiocarbon 55, 1869–1887 (2013).

    CAS  Article  Google Scholar 

  • 90.

    Brown, T. A. & Belt, S. T. Novel tri- and tetra-unsaturated highly branched isoprenoid (HBI) alkenes from the marine diatom Pleurosigma intermedium. Org. Geochem. 91, 120–122 (2016).

    CAS  Article  Google Scholar 

  • 91.

    Boon, J. J. et al. Black Sea sterol—a molecular fossil for dinoflagellate blooms. Nature 277, 125–127 (1979).

    CAS  Article  Google Scholar 

  • 92.

    Versteegh, G., Bosch, H. & De Leeuw, J. Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review. Org. Geochem. 27, 1–13 (1997).

    CAS  Article  Google Scholar 

  • 93.

    Rampen, S. W. et al. Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochim. Cosmochim. Acta 84, 204–216 (2012).

    CAS  Article  Google Scholar 

  • 94.

    Stein, R. & Macdonald, R. W. The Organic Carbon Cycle in the Arctic Ocean (Springer-Verlag, Berlin, 2004).

  • 95.

    Wu, J. et al. Biomarker data of sediment core ARA04C/37, Beaufort Sea, Arctic Ocean. PANGAEA https://doi.org/10.1594/PANGAEA.915048 (2020).

  • 96.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77