in

Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern

  • 1.

    Sorgeloos, P., Dhert, P. & Candreva, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200, 147–159 (2001).

    Article  Google Scholar 

  • 2.

    Cantrell, S. A., Casillas-Martinez, L. & Molina, M. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110, 962–970 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Gunde-Cimerman, N., Oren, A. & Plemenitaš, A. Introduction in Cellular Origin Life in Extreme Habitats and Astrobiology Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya 1–6 (Springer, Amsterdam, 2006).

    Google Scholar 

  • 4.

    Margesin, R. & Schinner, F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Begemann, M. B., Mormile, M. R., Paul, V. G. & Vidt, D. J. Potential Enhancement of Biofuel Production Through Enzymatic Biomass Degradation Activity and Biodiesel Production by Halophilic Microorganisms. In Halophiles and Hypersaline Environments (eds Ventosa, A. et al.) 341–357 (Springer, Berlin, 2011).

    Google Scholar 

  • 6.

    Paul, V. G., Minteer, S. D., Treu, B. L. & Mormile, M. R. Ability of a haloalkaliphilic bacterium isolated from Soap Lake, Washington to generate electricity at pH 11.0 and 7% salinity. Environ. Tech. 35, 1003–1011 (2013).

    Article  CAS  Google Scholar 

  • 7.

    Paul, V. G., Wronkiewicz, D. J., Mormile, M. R. & Foster, J. S. Mineralogy and microbial diversity of the microbialites in the hypersaline storrs lake, the Bahamas. Astrobiology 16, 282–300 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Mormile, M. R. et al. Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst. Appl. Microbiol. 22, 551–558 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Anton, J., Rossello-Mora, R., Rodriguez-Valera, F. & Amann, R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052–3057 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Boschker, H. T. S., Kromkamp, J. C. & Middelburg, J. J. Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol. Oceanograph. 50, 70–80 (2005).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Baati, H. et al. Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12, 505–518 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Ballav, S., Kerkar, S., Thomas, S. & Augustine, N. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng. 119, 323–330 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Casamayor, E. O. et al. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348 (2002).

    PubMed  Article  Google Scholar 

  • 14.

    Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: current insights and new directions. Microorganisms 4, 6. https://doi.org/10.3390/microorganisms4010006 (2016).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • 15.

    Villanueva, J. et al. Chlorophyll and carotenoid pigments in solar saltern microbial mats. Geochim. Cosmochim. Ac. 58, 4703–4715 (1994).

    ADS  Article  Google Scholar 

  • 16.

    Sørensen, K. B., Canfield, D. E. & Oren, A. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70, 1608–1616 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 17.

    Myshrall, K. L. et al. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8, 337–354 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Schneider, D. et al. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the kiritimati atoll, Central Pacific. PLoS ONE 8, e66662. https://doi.org/10.1371/journal.pone.0066662 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Louyakis, A. S. et al. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ. Microbiol. 20, 842–861 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Louyakis, A. S. et al. A study of the microbial spatial heterogeneity of bahamian thrombolites using molecular, biochemical, and stable isotope analyses. Astrobiology 17, 413–430 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Uritskiy, G. & Diruggiero, J. Applying genome-resolved metagenomics to deconvolute the halophilic microbiome. Genes 10, 220. https://doi.org/10.3390/genes10030220 (2019).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • 22.

    Kunin, V. et al. Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol. Syst. Biol. 4, 198. https://doi.org/10.1038/msb.2008.35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Robertson, C. E., Spear, J. R., Harris, J. K. & Pace, N. R. Diversity and stratification of archaea in a hypersaline microbial mat. Appl. Environ. Microbiol. 75, 1801–1810 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013).

    PubMed  Article  CAS  Google Scholar 

  • 25.

    Isaji, Y. et al. Efficient recycling of nutrients in modern and past hypersaline environments. Sci. Rep. 9, 1–12 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Kelley, C. A., Prufert-Bebout, L. E. & Bebout, B. M. Changes in carbon cycling ascertained by stable isotopic analyses in a hypersaline microbial mat. J. Geophys. Res. Biogeosci. 111, G4. https://doi.org/10.1029/2006jg000212 (2006).

    Article  Google Scholar 

  • 27.

    Vasconcelos, C. et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern precambrian relics?. Sed. Geol. 185, 175–183 (2006).

    CAS  Article  Google Scholar 

  • 28.

    Breitbart, M. et al. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ. Microbiol. 11, 16–34 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Belan, M. A. et al. Spatial distribution and preservation of carbon isotope biosignatures in freshwater microbialite carbonate. ACS Earth Space Chem. 3, 335–343 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Awramik, S. M. The oldest records of photosynthesis. Photosynthesis Res. 33, 75–89 (1992).

    CAS  Article  Google Scholar 

  • 31.

    Marais, D. J. D. & Canfield, D. E. The carbon isotope biogeochemistry of microbial mats. In Microbial Mats (eds Stal, L. & Caumette, P.) 289–298 (Springer, Berlin, 1994).

    Google Scholar 

  • 32.

    Ghosh, P. et al. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Ac. 70, 1439–1456 (2006).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Ghelani, A., Patel, R., Mangrola, A. & Dudhagara, P. Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India. Genom. Data 4, 54–56 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Nagasathya, A. & Thajuddin, N. Cyanobacterial diversity in the hypersaline environment of the saltpans of Southeastern Coast of India. Asian J. Plant. Sci. 7, 473–478 (2008).

    Article  Google Scholar 

  • 35.

    Ahmad, N. et al. Phylogenetic characterization of archaea in Saltpan Sediments. Indian J. Microbiol. 51, 132–137 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Jose, P. & Jebakumar, S. R. Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India. Aqua. Biosyst. 8, 23. https://doi.org/10.1186/2046-9063-8-23 (2012).

    CAS  Article  Google Scholar 

  • 37.

    Santhanakrishnan, T. et al. Microalgae richness and assemblage of man-made solar saltpans of Thoothukudi, TamilNadu. J. Oceanograph. Mar. Sci. 6, 20–24 (2015).

    Article  Google Scholar 

  • 38.

    Ghosh, P. et al. Trace element and isotopic studies of Permo-Carboniferous carbonate nodules from Talchir sediments of peninsular India: environmental and provenance implications. J. Earth Syst. Sci. 111, 87–93 (2002).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Chakraborty, P. P., Sarkar, A., Bhattacharya, S. K. & Sanyal, P. Isotopic and sedimentological clues to productivity change in Late Riphean Sea: a case study from two intracratonic basins of India. J. Earth Sys. Sci. 111, 379–390 (2002).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Mazumdar, A. & Bhattacharya, S. K. Stable isotopic study of late Neoproterozoic-early Cambrian (?) sediments from Nagaur-Ganganagar basin, western India: possible signatures of global and regional C-isotopic events. Geochem. J. 38, 163–175 (2004).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Banerjee, S., Bhattacharya, S. & Sarkar, S. Carbon and oxygen isotopic variations in peritidal stromatolite cycles, Paleoproterozoic Kajrahat Limestone, Vindhyan basin of central India. J. Asian Earth Sci. 29, 823–831 (2007).

    ADS  Article  Google Scholar 

  • 42.

    Oren, A. Microbiology and Biogeochemistry of Hypersaline Environments Vol. 5 (CRC Press, Boca Raton, 1998).

    Google Scholar 

  • 43.

    Ley, R. E. et al. Unexpected diversity and complexity of the guerrero negro hypersaline microbial mat. Appl. Environ. Microbiol. 72, 3685–3695 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Tkavc, R. et al. Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia). FEMS Microbiol. Ecol. 75, 48–62 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 45.

    Oren, A. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers. Conserv. 24, 781–798 (2015).

    Article  Google Scholar 

  • 46.

    Bebout, B. M. & Garcia-Pichel, F. UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61, 4215–4222 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Zhang, H., Schroder, J., Pittman, J., Wang, J. & Payton, M. Soil salinity using saturated paste and 1:1 soil to water extracts. Soil Sci. Soc. Am. J. 69, 1146–1151 (2005).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protocols Microbiol. 27, 1E – 5. https://doi.org/10.1002/9780471729259.mc01e05s27 (2012).

    MathSciNet  Article  Google Scholar 

  • 50.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article  Google Scholar 

  • 51.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Article  Google Scholar 

  • 52.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, 590–596 (2012).

    Article  CAS  Google Scholar 

  • 55.

    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385. https://doi.org/10.1186/1471-2105-12-385 (2011).

    Article  Google Scholar 

  • 56.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 9 (2001).

    Google Scholar 

  • 57.

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28, 27–30 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 59.

    Koo, H. et al. Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J. Microbiol. Met. 140, 15–22 (2017).

    Article  Google Scholar 

  • 60.

    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 1–9 (2020).

    CAS  Article  Google Scholar 

  • 61.

    Kaushal, R., Ghosh, P. & Pokharia, A. K. Stable isotopic composition of rice grain organic matter marking an abrupt shift of hydroclimatic condition during the cultural transformation of Harappan civilization. Quatern. Int. 512, 144–154 (2019).

    Article  Google Scholar 

  • 62.

    Rahul, P., Ghosh, P. & Bhattacharya, S. K. Rainouts over the Arabian Sea and Western Ghats during moisture advection and recycling explain the isotopic composition of Bangalore summer rains. J. Geophys. Res. Atmos. 121, 6148–6163 (2016).

    ADS  Article  Google Scholar 

  • 63.

    Sorokin, D. Y. et al. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int. J. Syst. Evol. Microbiol. 66, 2377–2381 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Wood, A. P., Woodall, C. A. & Kelly, D. P. Halothiobacillus neapolitanus strain OSWA isolated from “The old sulphur well” at Harrogate (Yorkshire, England). Sys. Appl. Microbiol. 28, 746–748 (2005).

    CAS  Article  Google Scholar 

  • 65.

    Naushad, H. S. & Gupta, R. S. Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PloS ONE 8, e55216. https://doi.org/10.1371/journal.pone.0055216 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Liang, B. et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5, 37. https://doi.org/10.1186/s13568-015-0117-4 (2015).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • 67.

    Fukunaga, Y. et al. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J. Gen. Appl. Microbiol. 55, 267–275 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Strömpl, C. Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int. J. Syst. Evol. Microbiol. 53, 1901–1906 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 69.

    Dunfield, P. F. et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450, 879–882 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Oren, A. Pyruvate: a key nutrient in hypersaline environments?. Microorganism 3, 407–416 (2015).

    CAS  Article  Google Scholar 

  • 71.

    Oren, A. et al. Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiology 626, 15–26 (2009).

    CAS  Article  Google Scholar 

  • 72.

    Cadena, S., García-Maldonado, J. Q., López-Lozano, N. E. & Cervantes, F. J. Methanogenic and sulfate-reducing activities in a hypersaline microbial mat and associated microbial diversity. Microb. Ecol. 75, 930–940 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Singh, A. K., Chakravarthy, D., Singh, T. P. K. & Singh, H. N. Evidence for a role for L-proline as a salinity protectant in the cyanobacterium Nostoc muscorum. Plant Cell. Environ. 19, 490–494 (1996).

    CAS  Article  Google Scholar 

  • 74.

    Bolhuis, H., Fillinger, L. & Stal, L. J. Coastal microbial mat diversity along a natural salinity gradient. PLoS ONE 8, e63166. https://doi.org/10.1371/journal.pone.0063166 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Dillon, J. G. et al. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur. Mexico. Front. Microbiol. 4, 399. https://doi.org/10.3389/fmicb.2013.00399 (2013).

    Article  PubMed  Google Scholar 

  • 76.

    Nobu, M. K. et al. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Al-Thani, R. et al. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha. Qatar. PLoS ONE 9, e92405. https://doi.org/10.1371/journal.pone.0092405 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 78.

    McIlroy, S. J. et al. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front. Microbiol. 8, 1134. https://doi.org/10.3389/fmicb.2017.01134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 79.

    Benhizia, Y. et al. Gamma proteobacteria can nodulate legumes of the genus hedysarum. Sys. Appl. Microbiol. 27, 462–468 (2004).

    CAS  Article  Google Scholar 

  • 80.

    Finster, K. W. et al. Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds. Stand. Genomic Sci. 8, 58–68 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Abed, R. M. M., Beer, D. D. & Stief, P. Functional-structural analysis of nitrogen-cycle bacteria in a hypersaline mat from the Omani Desert. Geomicrobiol. J. 32, 119–129 (2014).

    Article  CAS  Google Scholar 

  • 82.

    Santos, P. C. D. et al. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom. 13, 162. https://doi.org/10.1186/1471-2164-13-162 (2012).

    CAS  Article  Google Scholar 

  • 83.

    Francis, C. A., Beman, J. M. & Kuypers, M. M. M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1, 19–27 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 84.

    Minz, D. et al. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65, 4666–4671 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Baumgartner, L. et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sed. Geol. 185, 131–145 (2006).

    CAS  Article  Google Scholar 

  • 86.

    Wong, H. L. et al. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7, 46160. https://doi.org/10.1038/srep46160 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 87.

    Yoon, J., Matsuo, Y., Kasai, H. & Yokota, A. Limibacter armeniacum gen. nov., sp. nov., novel representative of the family ‘Flammeovirgaceae’isolated from marine sediment. Int. J. Sys. Evol. Microbiol. 58, 982–986 (2008).

    Article  Google Scholar 

  • 88.

    Cort, J. R. et al. Allochromatium vinosum DsrC: solution-state NMR structure, redox properties, and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J. Mol. Biol. 382, 692–707 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Garcia-Pichel, F., Mechling, M. & Castenholz, R. W. Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60, 1500–1511 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 90.

    Pinckney, J., Paerl, H. & Fitzpatrick, M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123, 207–216 (1995).

    ADS  Article  Google Scholar 

  • 91.

    Pages, A. et al. Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar. Chem. 167, 102–112 (2014).

    CAS  Article  Google Scholar 

  • 92.

    Chen, Z. et al. Phaeodactylibacter xiamenensis gen. nov., sp. nov., a member of the family Saprospiraceae isolated from the marine alga Phaeodactylum tricornutum. Int. J. Syst. Evol. Microbiol. 64, 3496–3502 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 93.

    Bernstein, H. C. et al. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat. FEMS Microbiol. Ecol. 93, 121. https://doi.org/10.1093/femsec/fix121 (2017).

    CAS  Article  Google Scholar 

  • 94.

    Green, S. J. et al. A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME J. 2, 457–470 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 95.

    Paul, V. G., Wronkiewicz, D. J. & Mormile, M. R. Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration. Appl. Geochem. 78, 250–271 (2017).

    CAS  Article  Google Scholar 

  • 96.

    Oren, A. The ecology of Dunaliella in high-salt environments. J. Biol. Res. Thessalon 21, 1–8 (2014).

    Article  Google Scholar 

  • 97.

    Houghton, J. et al. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13Corg fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology 12, 557–574 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 98.

    Planavsky, N. et al. Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7, 566–576 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 99.

    Schobben, M. & Schootbrugge, B. V. D. Increased stability in carbon isotope records reflects emerging complexity of the biosphere. Front. Earth Sci. 7, 87. https://doi.org/10.3389/feart.2019.00087 (2019).

    ADS  Article  Google Scholar 

  • 100.

    Wieland, A. et al. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Geobiology 6, 171–186 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 101.

    Peer, N., Rishworth, G. M. & Perissinotto, R. Coexistence of habitat specialists under environmental change: investigating dietary overlap in two brachyuran species at peritidal stromatolite ecosystems. Est. Coasts 4, 1149–1155 (2019).

    Article  Google Scholar 

  • 102.

    Severin, I., Confurius-Guns, V. & Stal, L. J. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. Arch. Microbiol. 194, 483–491 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 103.

    Calder, J. A. & Parker, P. L. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Ac. 37, 133–140 (1973).

    ADS  CAS  Article  Google Scholar 

  • 104.

    Nitti, A. et al. Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Astrobiology 12, 685–698 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 105.

    Higgins, M. B. et al. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments. Geochim. Cosmochim. Ac. 75, 7351–7363 (2011).

    ADS  CAS  Article  Google Scholar 

  • 106.

    Steppe, T. & Paerl, H. Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat. Aqua. Microb. Ecol. 28, 1–12 (2002).

    Article  Google Scholar 

  • 107.

    Wada, E., Kadonaga, T. & Matsuo, S. 15N aboundance in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochem. J. 9, 139–148 (1975).

    ADS  CAS  Article  Google Scholar 

  • 108.

    Wit, R. D., Falcon, L. I. & Charpy-Roubaud, C. Heterotrophic dinitrogen fixation (acetylene reduction) in phosphate-fertilised Microcoleus chthonoplastes microbial mat from the hypersaline inland lake ‘la Salada de Chiprana’ (NE Spain). Hydrobiology 534, 245–253 (2005).

    Article  CAS  Google Scholar 

  • 109.

    Buck, D. G. et al. Physical and chemical properties of hypersaline Lago Enriquillo, Dominican Republic. Int. Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 29, 725–731 (2005).

    CAS  Google Scholar 

  • 110.

    King, G. M. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc. Natl. Acad. Sci. 112, 4465–4470 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 111.

    Carmona, N. B. et al. Microbially induced sedimentary structures in Neogene tidal flats from Argentina: paleoenvironmental, stratigraphic and taphonomic implications. Palaeogeog. Palaeoecol. 353, 1–9 (2012).

    Article  Google Scholar 

  • 112.

    Noffke, N. & Awramik, S. Stromatolites and MISS—differences between relatives. GSA Today 23, 4–9 (2013).

    Article  Google Scholar 

  • 113.

    Knauth, L. P. Salinity history of the Earth’s early ocean. Nature 395, 554–555 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 114.

    Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 115.

    Isaji, Y. et al. Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy. Geochim. Cosmochim. Ac. 208, 354–367 (2017).

    ADS  CAS  Article  Google Scholar 

  • 116.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 117.

    Poretsky, R. et al. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS ONE 9, e93827. https://doi.org/10.1371/journal.pone.0093827 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 118.

    Ranjan, R. et al. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 119.

    Reese, B. K. et al. Nitrogen cycling of active bacteria within oligotrophic sediment of the Mid-Atlantic Ridge flank. Geomicrobiol. J. 35, 468–483 (2018).

    CAS  Article  Google Scholar 

  • 120.

    Roume, H. et al. A biomolecular isolation framework for eco-systems biology. ISME J. 7, 110–121 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 121.

    Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucl. Acids Res. 45, 180–188 (2017).

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Interactions between coral propagules in aquarium and field conditions

    Population viability in a host-parasitoid system is mediated by interactions between population stage structure and life stage differential susceptibility to toxicants