in

Designing ecologically optimized pneumococcal vaccines using population genomics

  • 1.

    Croucher, N. J., Løchen, A. & Bentley, S. D. Pneumococcal vaccines: host interactions, population dynamics, and design principles. Annu. Rev. Microbiol. 72, 521–549 (2018).

  • 2.

    Turner, P. et al. Improved detection of nasopharyngeal cocolonization by multiple pneumococcal serotypes by use of latex agglutination or molecular serotyping by microarray. J. Clin. Microbiol. 49, 1784–1789 (2011).

  • 3.

    Cobey, S. & Lipsitch, M. Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes. Science 335, 1376–1380 (2012).

  • 4.

    Weinberger, D. M., Malley, R. & Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. Lancet 378, 1962–1973 (2011).

  • 5.

    Johnson, H. L. et al. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med. 7, e1000348 (2010).

  • 6.

    Flasche, S. et al. Effect of pneumococcal conjugate vaccination on serotype-specific carriage and invasive disease in England: a cross-sectional study. PLoS Med. 8, e1001017 (2011).

  • 7.

    Huang, S. S. et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics 124, e1–e11 (2009).

  • 8.

    Masala, G. L., Lipsitch, M., Bottomley, C. & Flasche, S. Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination. J. R. Soc. Interface 14, 20170620 (2017).

  • 9.

    Gjini, E., Valente, C., Sá-Leão, R. & Gomes, M. G. M. How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems. J. Theor. Biol. 388, 50–60 (2016).

  • 10.

    Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45, 656–663 (2013).

  • 11.

    Chewapreecha, C. et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat. Genet. 46, 305–309 (2014).

  • 12.

    Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 1, 1950–1960 (2017).

  • 13.

    McNally, A. et al. Signatures of negative frequency dependent selection in colonisation factors and the evolution of a multi-drug resistant lineage of Escherichia coli. mbio 10, e00644-19 (2019).

  • 14.

    Azarian, T. et al. Prediction of post-vaccine population structure of Streptococcus pneumoniae using accessory gene frequencies. Preprint at https://doi.org/10.1101/420315 (2018).

  • 15.

    Hausdorff, W. P., Bryant, J., Paradiso, P. R. & Siber, G. R. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin. Infect. Dis. 30, 100–121 (2002).

    • Article
    • Google Scholar
  • 16.

    Hausdorff, W. P., Feikin, D. R. & Klugman, K. P. Epidemiological differences among pneumococcal serotypes. Lancet Infect. Dis. 5, 83–93 (2005).

  • 17.

    Feikin, D. R. et al. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med. 10, e1001517 (2013).

  • 18.

    Nurhonen, M. & Auranen, K. Optimal serotype compositions for pneumococcal conjugate vaccination under serotype replacement. PLoS Comput. Biol. 10, e1003477 (2014).

  • 19.

    Chen, C. et al. Effect and cost-effectiveness of pneumococcal conjugate vaccination: a global modelling analysis. Lancet Glob. Heal. 7, e58–e67 (2019).

    • Article
    • Google Scholar
  • 20.

    Ouldali, N. et al. Incidence of paediatric pneumococcal meningitis and emergence of new serotypes: a time-series analysis of a 16-year French national survey. Lancet Infect. Dis. 18, 983–991 (2018).

  • 21.

    Kyaw, M. H. et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N. Engl. J. Med. 354, 1455–1463 (2006).

  • 22.

    Lee, G. M. et al. Immunization, antibiotic use, and pneumococcal colonization over a 15-year period. Pediatrics 140, e20170001 (2017).

  • 23.

    Tomczyk, S. et al. Prevention of antibiotic-nonsusceptible invasive pneumococcal disease with the 13-valent pneumococcal conjugate vaccine. Clin. Infect. Dis. 62, 1119–1125 (2016).

  • 24.

    Lo, S. W. et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect. Dis. 19, 759–769 (2019).

  • 25.

    van Hoek, A. J., Choi, Y. H., Trotter, C., Miller, E. & Jit, M. The cost-effectiveness of a 13-valent pneumococcal conjugate vaccination for infants in England. Vaccine 30, 7205–7213 (2012).

  • 26.

    Centers for Disease Control and Prevention. CDC Vaccine Price List (2019); https://www.cdc.gov/vaccines/programs/vfc/awardees/vaccine-management/price-list/index.html

  • 27.

    Mackenzie, G. A. et al. Effect of the introduction of pneumococcal conjugate vaccination on invasive pneumococcal disease in The Gambia: a population-based surveillance study. Lancet Infect. Dis. 16, 703–711 (2016).

  • 28.

    Ladhani, S. N. et al. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–17: a prospective national observational cohort study. Lancet Infect. Dis. 18, 441–451 (2018).

  • 29.

    Weinberger, D. M. et al. Relating pneumococcal carriage among children to disease rates among adults before and after the introduction of conjugate vaccines. Am. J. Epidemiol. 183, 1055–1062 (2016).

  • 30.

    Hanage, W. P. et al. Evidence that pneumococcal serotype replacement in Massachusetts following conjugate vaccination is now complete. Epidemics 2, 80–84 (2010).

  • 31.

    Ubukata, K. et al. Serotype changes and drug resistance in invasive pneumococcal diseases in adults after vaccinations in children, Japan, 2010–2013. Emerg. Infect. Dis. 24, 2010–2020 (2015).

  • 32.

    Kavalari, I. D., Fuursted, K., Krogfelt, K. A. & Slotved, H. C. Molecular characterization and epidemiology of Streptococcus pneumoniae serotype 24F in Denmark. Sci. Rep. 9, 5481 (2019).

  • 33.

    Balsells, E., Guillot, L., Nair, H. & Kyaw, M. H. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: a systematic review and meta-analysis. PLoS ONE 12, e0177113 (2017).

  • 34.

    Park, I. H. et al. Differential effects of pneumococcal vaccines against serotypes 6A and 6C. J. Infect. Dis. 198, 1818–1822 (2008).

  • 35.

    Croucher, N. J. et al. Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological screening. Proc. Natl Acad. Sci. USA 114, E357–E366 (2017).

  • 36.

    Campo, J. J. et al. Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination. eLife 7, e37015 (2018).

  • 37.

    Tleyjeh, I. M., Tlaygeh, H. M., Hejal, R., Montori, V. M. & Baddour, L. M. The Impact of penicillin resistance on short-term mortality in hospitalized adults with pneumococcal pneumonia: a systematic review and meta-analysis. Clin. Infect. Dis. 42, 788–797 (2006).

  • 38.

    Navarro-Torné, A. et al. Risk factors for death from invasive pneumococcal disease, Europe, 2010. Emerg. Infect. Dis. 21, 417–425 (2015).

  • 39.

    Atkins, K. E. & Lipsitch, M. Can antibiotic resistance be reduced by vaccinating against respiratory disease? Lancet Respir. Med. 6, 820–821 (2018).

  • 40.

    Finkelstein, J. A. et al. Impact of a 16-community trial to promote judicious antibiotic use in Massachusetts. Pediatrics 121, e15–e23 (2008).

  • 41.

    Wroe, P. C. et al. Pneumococcal carriage and antibiotic resistance in young children before 13-valent conjugate vaccine. Pediatr. Infect. Dis. J. 31, 249–254 (2012).

  • 42.

    Davies, N. G., Flasche, S., Jit, M. & Atkins, K. E. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. 3, 440–449 (2019).

  • 43.

    Ruczinski, I., Kooperberg, C. & Leblanc, M. Logic regression. J. Comput. Graph. Stat. 12, 475–511 (2003).

    • Article
    • Google Scholar
  • 44.

    Kay, E., Cuccui, J. & Wren, B. W. Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines 4, 16 (2019).

  • 45.

    Andrews, N. J. et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect. Dis. 14, 839–846 (2014).

  • 46.

    Gladstone, R. A. et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine 43, 338–346 (2019).

  • 47.

    Metcalf, B. J. et al. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin. Microbiol. Infect. 22, 1002.e1–1002.e8 (2016).

  • 48.

    del Amo, E. et al. High invasiveness of pneumococcal serotypes included in the new generation of conjugate vaccines. Clin. Microbiol. Infect. 20, 684–689 (2014).

  • 49.

    Parra, E. L. et al. Changes in Streptococcus pneumoniae serotype distribution in invasive disease and nasopharyngeal carriage after the heptavalent pneumococcal conjugate vaccine introduction in Bogotá, Colombia. Vaccine 31, 4033–4038 (2013).

  • 50.

    Rivera-Olivero, I. A. et al. Carriage and invasive isolates of Streptococcus pneumoniae in Caracas, Venezuela: the relative invasiveness of serotypes and vaccine coverage. Eur. J. Clin. Microbiol. Infect. Dis. 30, 1489–1495 (2011).

  • 51.

    Sá-Leao, R. et al. Analysis of invasiveness of pneumococcal serotypes and clones circulating in Portugal before widespread use of conjugate vaccines reveals heterogeneous behavior of clones expressing the same serotype. J. Clin. Microbiol. 49, 1369–1375 (2011).

  • 52.

    Sandgren, A. et al. Effect of clonal and serotype‐specific properties on the invasive capacity of Streptococcus pneumoniae. J. Infect. Dis. 189, 785–796 (2004).

  • 53.

    Scott, J. et al. Serotype distribution and prevalence of resistance to benzylpenicillin in three representative populations of Streptococcus pneumoniae isolates from the coast of Kenya. Clin Infect Dis 27, 1442–1450 (1998).

  • 54.

    Sharma, D. et al. Pneumococcal carriage and invasive disease in children before introduction of the 13-valent conjugate vaccine: comparison with the era before 7-valent conjugate vaccine. Pediatr. Infect. Dis. J. 32, e45–e53 (2013).

  • 55.

    Smith, T. et al. Acquisition and invasiveness of different serotypes of Streptococcus pneumoniae in young children. Epidemiol. Infect. 111, 27–39 (1993).

  • 56.

    Trotter, C. L. et al. Epidemiology of invasive pneumococcal disease in the pre-conjugate vaccine era: England and Wales, 1996–2006. J. Infect. 60, 200–208 (2010).

  • 57.

    Varon, E., Cohen, R., Béchet, S., Doit, C. & Levy, C. Invasive disease potential of pneumococci before and after the 13-valent pneumococcal conjugate vaccine implementation in children. Vaccine 33, 6178–6185 (2015).

  • 58.

    Zemlickova, H. et al. Serotype-specific invasive disease potential of Streptococcus pneumoniae in Czech children. J. Med. Microbiol. 59, 1079–1083 (2010).

  • 59.

    Browall, S. et al. Clinical manifestations of invasive pneumococcal disease by vaccine and non-vaccine types. Eur. Respir. J. 44, 1646–1657 (2014).

  • 60.

    Yildirim, I. et al. Serotype specific invasive capacity and persistent reduction in invasive pneumococcal disease. Vaccine 29, 283–288 (2010).

  • 61.

    Brueggemann, A. B. et al. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype‐ and clone‐specific differences in invasive disease potential. J. Infect. Dis. 187, 1424–1432 (2003).

  • 62.

    Brueggemann, A. B. et al. Temporal and geographic stability of the serogroup‐specific invasive disease potential of Streptococcus pneumoniae in children. J. Infect. Dis. 190, 1203–1211 (2004).

  • 63.

    Gray, B. M., Converse, G. M. & Dillon, H. C. Serotypes of Streptococcus pneumoniae causing disease. J. Infect. Dis. 140, 979–983 (1979).

  • 64.

    Hanage, W. P. et al. Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland. Infect. Immun. 73, 431–435 (2005).

  • 65.

    Jroundi, I. et al. Streptococcus pneumoniae carriage among healthy and sick pediatric patients before the generalized implementation of the 13-valent pneumococcal vaccine in Morocco from 2010 to 2011. J. Infect. Public Health 10, 165–170 (2017).

  • 66.

    Kellner, J. D. et al. The use of Streptococcus pneumoniae nasopharyngeal isolates from healthy children to predict features of invasive disease. Pediatr. Infect. Dis. J. 17, 279–286 (1998).

  • 67.

    Levidiotou, S. et al. Serotype distribution of Streptococcus pneumoniae in north-western Greece and implications for a vaccination programme. FEMS Immunol. Med. Microbiol. 48, 179–182 (2006).

  • 68.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. https://doi.org/10.18637/jss.v036.i03 (2015).

  • 69.

    Mostowy, R. et al. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet. 10, e1004300 (2014).

  • 70.

    Croucher, N. J. et al. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat. Commun. 5, 5471 (2014).

  • 71.

    Lees, J. A. et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 29, 304–316 (2019).

  • 72.

    Croucher, N. J. et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol. Evol. 6, 1589–1602 (2014).

  • 73.

    Croucher, N. J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

  • 74.

    Croucher, N. J. et al. Variable recombination dynamics during the emergence, transmission and ‘disarming’ of a multidrug-resistant pneumococcal clone. BMC Biol. 12, 49 (2014).

  • 75.

    Fahrmeir, L. & Tutz, G. Multivariate Statistical Modelling Based on Generalized Linear Models 2nd edn (Springer, 2013).

  • 76.

    Flasche, S. The scope for pneumococcal vaccines that do not prevent transmission. Vaccine 35, 6043–6046 (2017).

  • 77.

    Mrkvan, T., Pelton, S. I., Ruiz-Guiñazú, J., Palmu, A. A. & Borys, D. Effectiveness and impact of the 10-valent pneumococcal conjugate vaccine, PHiD-CV: review of clinical trials and post-marketing experience. Expert Rev. Vaccines 17, 797–818 (2018).


  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries