in

Development of metal adaptation in a tropical marine zooplankton

  • 1.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952, https://doi.org/10.1126/science.1149345 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771, https://doi.org/10.1126/science.1260352 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Lu, Y. et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 239, 670–680, https://doi.org/10.1016/j.envpol.2018.04.016 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Nguyen, X. V., Tran, M. H., Le, T. D. & Papenbrock, J. An assessment of heavy metal contamination on the surface sediment of seagrass beds at the Khanh Hoa Coast, Vietnam. B. Environ. Contam. Tox. 99, 728–734, https://doi.org/10.1007/s00128-017-2191-6 (2017).

    CAS  Article  Google Scholar 

  • 5.

    Le, X. S. & Nguyen, V. B. Assessment of heavy metal concentration (copper, lead and zinc) in the seawater environment in typical coastal island communes. Vietnam Environment Administration Magazine – Ministry of Natural Resources and Environment, Vietnam III, 49–55 (2018).

    Google Scholar 

  • 6.

    Dinh, K. V. Vietnam’s fish kill remains unexamined. Science 365, 333–333, https://doi.org/10.1126/science.aay6007 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Colin, S. P. & Dam, H. G. Testing for resistance of pelagic marine copepods to a toxic dinoflagellate. Evol. Ecol. 18, 355–377, https://doi.org/10.1007/s10682-004-2369-3 (2005).

    Article  Google Scholar 

  • 8.

    Klerks, P. L. & Weis, J. S. Genetic adaptation to heavy metals in aquatic organisms: A review. Environ. Pollut. 45, 173–205, https://doi.org/10.1016/0269-7491(87)90057-1 (1987).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Annu. Rev. Mar. Sci. 5, 349–370, https://doi.org/10.1146/annurev-marine-121211-172229 (2013).

    Article  Google Scholar 

  • 10.

    Krause, K. E., Dinh, K. V. & Nielsen, T. G. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa. Sci. Total Environ. 607–608, 87–94, https://doi.org/10.1016/j.scitotenv.2017.06.139 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 11.

    Wang, M. H., Zhang, C. & Lee, J. S. Quantitative shotgun proteomics associates molecular-level cadmium toxicity responses with compromised growth and reproduction in a marine copepod under multigenerational exposure. Environ. Sci. Technol. 52, 1612–1623, https://doi.org/10.1021/acs.est.8b00149 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 12.

    Tran, T. T., Janssens, L., Dinh, K. V. & Stoks, R. Transgenerational interactions between pesticide exposure and warming in a vector mosquito. Evol. Appl. 11, 906–917, https://doi.org/10.1111/eva.12605 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Dao, T. -S., Vo, T. -M.-C., Wiegand, C., Bui, B. -T. & Dinh, K. V. Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations. Environ. Pollut. 243, 791–799, https://doi.org/10.1016/j.envpol.2018.09.055 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Chang. 2, 30–32 (2012).

    ADS  Article  Google Scholar 

  • 15.

    Doan, X. N. et al. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci. Rep. 9, 4550, https://doi.org/10.1038/s41598-019-40996-7 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Kelly, M. W., Pankey, M. S., DeBiasse, M. B. & Plachetzki, D. C. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31, 398–406, https://doi.org/10.1111/1365-2435.12725 (2017).

    Article  Google Scholar 

  • 17.

    Moe, S. J. et al. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ. Toxicol. Chem. 32, 49–61, https://doi.org/10.1002/etc.2045 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Dinh Van, K. et al. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. Glob. Change Biol. 19, 2625–2633, https://doi.org/10.1111/gcb.12243 (2013).

    ADS  Article  Google Scholar 

  • 19.

    Stoks, R., Debecker, S., Dinh, K. V. & Janssens, L. Integrating ecology and evolution in aquatic toxicology: insights from damselflies. Freshw. Sci. 34, 1032–1039, https://doi.org/10.1086/682571 (2015).

    Article  Google Scholar 

  • 20.

    Janssens, L., Dinh, K. V., Debecker, S., Bervoets, L. & Stoks, R. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach. Evol. Appl. 7, 421–430, https://doi.org/10.1111/eva.12141 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Vera-Chang, M. N. et al. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. Proc. Natl. Acad. Sci. USA 115, E12435–E12442, https://doi.org/10.1073/pnas.1811695115 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Dinh Van, K., Janssens, L., Debecker, S. & Stoks, R. Temperature- and latitude-specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. J. Appl. Ecol. 51, 919–928 (2014).

    Article  Google Scholar 

  • 23.

    Noyes, P. D. & Lema, S. C. Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Curr. Zool. 61, 669–689, https://doi.org/10.1093/czoolo/61.4.669 (2015).

    Article  Google Scholar 

  • 24.

    Grønning, J. B., Doan, N. X., Dinh, T. N., Dinh, K. V. & Nielsen, T. G. Ecology of Pseudodiaptomus annandalei in tropical aquaculture ponds with emphasis on the limitation of production. J. Plankton Res. 41, 741–758 (2019).

    Article  Google Scholar 

  • 25.

    Doan, N. X. et al. Temperature- and sex-specific grazing rate of a tropical copepod Pseudodiaptomus annandalei to food availability: implications for live feed in aquaculture. Aquacult. Res. 49, 3864–3873, https://doi.org/10.1111/are.13854 (2018).

    Article  Google Scholar 

  • 26.

    Chew, L. L., Chong, V. C., Tanaka, K. & Sasekumar, A. Phytoplankton fuel the energy flow from zooplankton to small nekton in turbid mangrove waters. Mar. Ecol. Prog. Ser. 469, 7–24, https://doi.org/10.3354/meps09997 (2012).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Prato, E., Parlapiano, I. & Biandolino, F. Sublethal effects of copper on some biological traits of the amphipod Gammarus aequicauda reared under laboratory conditions. Chemosphere 93, 1015–1022, https://doi.org/10.1016/j.chemosphere.2013.05.071 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Schwarz, J. A., Mitchelmore, C. L., Jones, R., O’Dea, A. & Seymour, S. Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi. Comp. Biochem. Phys. C Toxicol. & Pharmacol. 157, 272–279, https://doi.org/10.1016/j.cbpc.2012.12.003 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Holan, J. R., King, C. K., Sfiligoj, B. J. & Davis, A. R. Toxicity of copper to three common subantarctic marine gastropods. Ecotox. and Environ. Safe. 136, 70–77, https://doi.org/10.1016/j.ecoenv.2016.10.025 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Caldwell, G. S., Lewis, C., Pickavance, G., Taylor, R. L. & Bentley, M. G. Exposure to copper and a cytotoxic polyunsaturated aldehyde induces reproductive failure in the marine polychaete Nereis virens (Sars). Aquat. Toxicol. 104, 126–134, https://doi.org/10.1016/j.aquatox.2011.03.018 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Biandolino, F., Parlapiano, I., Faraponova, O. & Prato, E. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus. Ecotox. and Environ. Safe. 147, 327–333, https://doi.org/10.1016/j.ecoenv.2017.08.041 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Kwok, K. W. H. & Leung, K. M. Y. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull. 51, 830–837, https://doi.org/10.1016/j.marpolbul.2005.02.036 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Dinh, K. V., Olsen, M. W., Altin, D., Vismann, B. & Nielsen, T. G. Impact of temperature and pyrene exposure on the functional response of males and females of the copepod Calanus finmarchicus. Environ. Sci. Pollut. Res. 26, 29327–29333, https://doi.org/10.1007/s11356-019-06078-x (2019).

    CAS  Article  Google Scholar 

  • 34.

    Amiard, J. C., Amiard-Triquet, C., Barka, S. & Pellerin, J. & Rainbow, P. S. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 76, 160–202, https://doi.org/10.1016/j.aquatox.2005.08.015 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Ki, J. S. et al. Gene expression profiling of copper-induced responses in the intertidal copepod Tigriopus japonicus using a 6K oligochip microarray. Aquat. Toxicol. 93, 177–187, https://doi.org/10.1016/j.aquatox.2009.04.004 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Kim, B.-M. et al. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp. Biochem. Phys. C Toxicol. & Pharmacol. 166, 65–74, https://doi.org/10.1016/j.cbpc.2014.07.005 (2014).

    CAS  Article  Google Scholar 

  • 37.

    Xu, K. et al. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish Shellfish Immun. 82, 77–83, https://doi.org/10.1016/j.fsi.2018.08.016 (2018).

    CAS  Article  Google Scholar 

  • 38.

    Dipinto, L. M., Coull, B. C. & Chandler, G. T. Lethal and sublethal effects of the sediment-associated PCB aroclor 1254 on a meiobenthic copepod. Environ. Toxicol. Chem. 12, 1909–1918, https://doi.org/10.1002/etc.5620121017 (1993).

    CAS  Article  Google Scholar 

  • 39.

    Medina, M., Barata, C., Telfer, R. & Baird, D. J. Age- and sex-related variation in sensitivity to the pyrethroid cypermethrin in the marine copepod Acartia tonsa Dana. Arch. Environ. Con. Tox. 42, 17–22 (2002).

    CAS  Article  Google Scholar 

  • 40.

    Kadiene, E. U., Bialais, C., Ouddane, B., Hwang, J. S. & Souissi, S. Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity. Ecotoxicology 26, 1227–1239, https://doi.org/10.1007/s10646-017-1848-6 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    McManus, G. B., Wyman, K. D., Peterson, W. T. & Wurster, C. F. Factors affecting the elimination of PCBs in the marine copepod Acartia tonsa. Estuar. Coast. Shelf Sci. 17, 421–430, https://doi.org/10.1016/0272-7714(83)90127-0 (1983).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Toxværd, K., Dinh, K. V., Henriksen, O., Hjorth, M. & Nielsen, T. Impact of pyrene exposure during overwintering of the Arctic copepod Calanus glacialis. Environ. Sci. Technol. 52, 10328–10336, https://doi.org/10.1021/acs.est.8b03327 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 43.

    Koski, M., Stedmon, C. & Trapp, S. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa. Mar. Environ. Res. 129, 374–385, https://doi.org/10.1016/j.marenvres.2017.06.006 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Hansen, B. H. et al. Maternal polycyclic aromatic hydrocarbon (PAH) transfer and effects on offspring of copepods exposed to dispersed oil with and without oil droplets. J. Toxicol. Environ. Health A Curr. Issues 80, 881–894, https://doi.org/10.1080/15287394.2017.1352190 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Byrne, M., Foo, S. A., Ross, P. M. & Putnam, H. M. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. Glob. Change Biol. 26, 80–102, https://doi.org/10.1111/gcb.14882 (2020).

    ADS  Article  Google Scholar 

  • 46.

    Brander, S. M., Biales, A. D. & Connon, R. E. The role of epigenomics in aquatic toxicology. Environ. Toxicol. Chem. 36, 2565–2573, https://doi.org/10.1002/etc.3930 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Ivanina, A. V. & Sokolova, I. M. Interactive effects of metal pollution and ocean acidification on physiology of marine organisms. Curr. Zool. 61, 653–668, https://doi.org/10.1093/czoolo/61.4.653 (2015).

    Article  Google Scholar 

  • 48.

    Blewett, T. A., Simon, R. A., Turko, A. J. & Wright, P. A. Copper alters hypoxia sensitivity and the behavioural emersion response in the amphibious fish Kryptolebias marmoratus. Aquat. Toxicol. 189, 25–30, https://doi.org/10.1016/j.aquatox.2017.05.007 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Fitzgerald, J. A. et al. Sublethal exposure to copper supresses the ability to acclimate to hypoxia in a model fish species. Aquat. Toxicol. 217, https://doi.org/10.1016/j.aquatox.2019.105325 (2019).

  • 50.

    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750, https://doi.org/10.1038/s41559-018-0669-1 (2018).

    Article  PubMed  Google Scholar 

  • 51.

    Sommer, U., Peter, K. H., Genitsaris, S. & Moustaka-Gouni, M. Do marine phytoplankton follow Bergmann’s rule sensu lato? Biol. Rev. 92, 1011–1026, https://doi.org/10.1111/brv.12266 (2017).

    Article  PubMed  Google Scholar 

  • 52.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793, https://doi.org/10.1073/pnas.0902080106 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 53.

    Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiorboe, T. A global synthesis of seasonal temperature-size responses in copepods. Global Ecol. Biogeogr. 25, 988–999, https://doi.org/10.1111/geb.12460 (2016).

    Article  Google Scholar 

  • 54.

    Pan, Y. J. et al. Effects of cold selective breeding on the body length, fatty acid content, and productivity of the tropical copepod Apocyclops royi (Cyclopoida, Copepoda). J. Plankton Res. 39, 994–1003, https://doi.org/10.1093/plankt/fbx041 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563, https://doi.org/10.1242/jeb.149989 (2017).

    Article  PubMed  Google Scholar 

  • 56.

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 3, 254–258, https://doi.org/10.1038/nclimate1691 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  • 57.

    Kiørboe, T. & Sabatini, M. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120, 285–298, https://doi.org/10.3354/meps120285 (1995).

    ADS  Article  Google Scholar 

  • 58.

    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14, https://doi.org/10.1111/eva.12137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here? Glob. Change Biol. 24, 13–34, https://doi.org/10.1111/gcb.13903 (2018).

    ADS  Article  Google Scholar 

  • 60.

    Calosi, P. et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. T. R. Soc. B 368, https://doi.org/10.1098/rstb.2012.0444 (2013).

  • 61.

    Lee, Y. H., Jeong, C. B., Wang, M. H., Hagiwara, A. & Lee, J. S. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. Mar. Pollut. Bull. 153, https://doi.org/10.1016/j.marpolbul.2020.111006 (2020).

  • 62.

    Yao, Y., Wang, J., Yin, J. & Zou, X. Marine heatwaves in China’s marginal seas and adjacent offshore waters: past, present, and future. J. Geophys. Res. Oceans 125, e2019JC015801 (2020).

    ADS  Article  Google Scholar 

  • 63.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312, https://doi.org/10.1038/s41558-019-0412-1 (2019).

    ADS  Article  Google Scholar 

  • 64.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315, https://doi.org/10.1111/j.1461-0248.2008.01253.x (2008).

    Article  PubMed  Google Scholar 

  • 65.

    Vietnamese Ministry of Natural Resources and Environment. (ed Ministry of Natural Resources and Environment) 10 (Hanoi, 2015).

  • 66.

    Cai, M. G. et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 633, 1206–1216, https://doi.org/10.1016/j.scitotenv.2018.03.197 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 67.

    Landis, W. G. et al. Global climate change and contaminants, a call to arms not yet heard? Integr. Environ. Assess. 10, 483–484, https://doi.org/10.1002/ieam.1568 (2014).

    Article  Google Scholar 

  • 68.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526, https://doi.org/10.1038/s41586-018-0301-1 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 69.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790, https://doi.org/10.1126/science.1132294 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 70.

    Hwang, J. S. et al. Patterns of zooplankton distribution along the marine, estuarine, and riverine portions of the Danshuei ecosystem in northern Taiwan. Zool. Stud. 49, 335–352 (2010).

    Google Scholar 

  • 71.

    Dhanker, R., Kumar, R. & Hwang, J. S. Predation by Pseudodiaptomus annandalei (Copepoda: Calanoida) on rotifer prey: Size selection, egg predation and effect of algal diet. J. Exp. Mar. Biol. Ecol. 414, 44–53, https://doi.org/10.1016/j.jembe.2012.01.011 (2012).

    Article  Google Scholar 

  • 72.

    Golez, M. S. N., Takahashi, T., Ishimaru, T. & Ohno, A. Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida). Plankt. Biol. Ecol. 51, 15–25 (2004).

    Google Scholar 

  • 73.

    Colin, S. P. & Dam, H. G. Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and reproduction of populations of the copepod Acartia hudsonica. Harmful Algae 1, 113–125, https://doi.org/10.1016/S1568-9883(02)00007-0 (2002).

    Article  Google Scholar 

  • 74.

    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–&, https://doi.org/10.1139/m62-029 (1962).

    CAS  Article  PubMed  Google Scholar 

  • 75.

    IPCC. Climate change 2013: The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

  • 76.

    Quinn, G. P. & Michael, K. J. Experimental design and data analysis for biologists. 537 (Cambridge University Press, 2002).

  • 77.

    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10, https://doi.org/10.1890/10-0340.1 (2011).

    Article  PubMed  Google Scholar 

  • 78.

    Dinh, K. V. et al. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly. Environ. Pollut. 218, 634–643, https://doi.org/10.1016/j.envpol.2016.07.047 (2016).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Desertifying deserts

    Researchers find solar photovoltaics benefits outweigh costs