in

Development of metal adaptation in a tropical marine zooplankton

  • 1.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952, https://doi.org/10.1126/science.1149345 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771, https://doi.org/10.1126/science.1260352 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Lu, Y. et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 239, 670–680, https://doi.org/10.1016/j.envpol.2018.04.016 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Nguyen, X. V., Tran, M. H., Le, T. D. & Papenbrock, J. An assessment of heavy metal contamination on the surface sediment of seagrass beds at the Khanh Hoa Coast, Vietnam. B. Environ. Contam. Tox. 99, 728–734, https://doi.org/10.1007/s00128-017-2191-6 (2017).

    CAS  Article  Google Scholar 

  • 5.

    Le, X. S. & Nguyen, V. B. Assessment of heavy metal concentration (copper, lead and zinc) in the seawater environment in typical coastal island communes. Vietnam Environment Administration Magazine – Ministry of Natural Resources and Environment, Vietnam III, 49–55 (2018).

    Google Scholar 

  • 6.

    Dinh, K. V. Vietnam’s fish kill remains unexamined. Science 365, 333–333, https://doi.org/10.1126/science.aay6007 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Colin, S. P. & Dam, H. G. Testing for resistance of pelagic marine copepods to a toxic dinoflagellate. Evol. Ecol. 18, 355–377, https://doi.org/10.1007/s10682-004-2369-3 (2005).

    Article  Google Scholar 

  • 8.

    Klerks, P. L. & Weis, J. S. Genetic adaptation to heavy metals in aquatic organisms: A review. Environ. Pollut. 45, 173–205, https://doi.org/10.1016/0269-7491(87)90057-1 (1987).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Annu. Rev. Mar. Sci. 5, 349–370, https://doi.org/10.1146/annurev-marine-121211-172229 (2013).

    Article  Google Scholar 

  • 10.

    Krause, K. E., Dinh, K. V. & Nielsen, T. G. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa. Sci. Total Environ. 607–608, 87–94, https://doi.org/10.1016/j.scitotenv.2017.06.139 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 11.

    Wang, M. H., Zhang, C. & Lee, J. S. Quantitative shotgun proteomics associates molecular-level cadmium toxicity responses with compromised growth and reproduction in a marine copepod under multigenerational exposure. Environ. Sci. Technol. 52, 1612–1623, https://doi.org/10.1021/acs.est.8b00149 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 12.

    Tran, T. T., Janssens, L., Dinh, K. V. & Stoks, R. Transgenerational interactions between pesticide exposure and warming in a vector mosquito. Evol. Appl. 11, 906–917, https://doi.org/10.1111/eva.12605 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Dao, T. -S., Vo, T. -M.-C., Wiegand, C., Bui, B. -T. & Dinh, K. V. Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations. Environ. Pollut. 243, 791–799, https://doi.org/10.1016/j.envpol.2018.09.055 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Chang. 2, 30–32 (2012).

    ADS  Article  Google Scholar 

  • 15.

    Doan, X. N. et al. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci. Rep. 9, 4550, https://doi.org/10.1038/s41598-019-40996-7 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Kelly, M. W., Pankey, M. S., DeBiasse, M. B. & Plachetzki, D. C. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31, 398–406, https://doi.org/10.1111/1365-2435.12725 (2017).

    Article  Google Scholar 

  • 17.

    Moe, S. J. et al. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ. Toxicol. Chem. 32, 49–61, https://doi.org/10.1002/etc.2045 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Dinh Van, K. et al. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient. Glob. Change Biol. 19, 2625–2633, https://doi.org/10.1111/gcb.12243 (2013).

    ADS  Article  Google Scholar 

  • 19.

    Stoks, R., Debecker, S., Dinh, K. V. & Janssens, L. Integrating ecology and evolution in aquatic toxicology: insights from damselflies. Freshw. Sci. 34, 1032–1039, https://doi.org/10.1086/682571 (2015).

    Article  Google Scholar 

  • 20.

    Janssens, L., Dinh, K. V., Debecker, S., Bervoets, L. & Stoks, R. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach. Evol. Appl. 7, 421–430, https://doi.org/10.1111/eva.12141 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Vera-Chang, M. N. et al. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. Proc. Natl. Acad. Sci. USA 115, E12435–E12442, https://doi.org/10.1073/pnas.1811695115 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Dinh Van, K., Janssens, L., Debecker, S. & Stoks, R. Temperature- and latitude-specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. J. Appl. Ecol. 51, 919–928 (2014).

    Article  Google Scholar 

  • 23.

    Noyes, P. D. & Lema, S. C. Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Curr. Zool. 61, 669–689, https://doi.org/10.1093/czoolo/61.4.669 (2015).

    Article  Google Scholar 

  • 24.

    Grønning, J. B., Doan, N. X., Dinh, T. N., Dinh, K. V. & Nielsen, T. G. Ecology of Pseudodiaptomus annandalei in tropical aquaculture ponds with emphasis on the limitation of production. J. Plankton Res. 41, 741–758 (2019).

    Article  Google Scholar 

  • 25.

    Doan, N. X. et al. Temperature- and sex-specific grazing rate of a tropical copepod Pseudodiaptomus annandalei to food availability: implications for live feed in aquaculture. Aquacult. Res. 49, 3864–3873, https://doi.org/10.1111/are.13854 (2018).

    Article  Google Scholar 

  • 26.

    Chew, L. L., Chong, V. C., Tanaka, K. & Sasekumar, A. Phytoplankton fuel the energy flow from zooplankton to small nekton in turbid mangrove waters. Mar. Ecol. Prog. Ser. 469, 7–24, https://doi.org/10.3354/meps09997 (2012).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Prato, E., Parlapiano, I. & Biandolino, F. Sublethal effects of copper on some biological traits of the amphipod Gammarus aequicauda reared under laboratory conditions. Chemosphere 93, 1015–1022, https://doi.org/10.1016/j.chemosphere.2013.05.071 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Schwarz, J. A., Mitchelmore, C. L., Jones, R., O’Dea, A. & Seymour, S. Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi. Comp. Biochem. Phys. C Toxicol. & Pharmacol. 157, 272–279, https://doi.org/10.1016/j.cbpc.2012.12.003 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Holan, J. R., King, C. K., Sfiligoj, B. J. & Davis, A. R. Toxicity of copper to three common subantarctic marine gastropods. Ecotox. and Environ. Safe. 136, 70–77, https://doi.org/10.1016/j.ecoenv.2016.10.025 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Caldwell, G. S., Lewis, C., Pickavance, G., Taylor, R. L. & Bentley, M. G. Exposure to copper and a cytotoxic polyunsaturated aldehyde induces reproductive failure in the marine polychaete Nereis virens (Sars). Aquat. Toxicol. 104, 126–134, https://doi.org/10.1016/j.aquatox.2011.03.018 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Biandolino, F., Parlapiano, I., Faraponova, O. & Prato, E. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus. Ecotox. and Environ. Safe. 147, 327–333, https://doi.org/10.1016/j.ecoenv.2017.08.041 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Kwok, K. W. H. & Leung, K. M. Y. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull. 51, 830–837, https://doi.org/10.1016/j.marpolbul.2005.02.036 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Dinh, K. V., Olsen, M. W., Altin, D., Vismann, B. & Nielsen, T. G. Impact of temperature and pyrene exposure on the functional response of males and females of the copepod Calanus finmarchicus. Environ. Sci. Pollut. Res. 26, 29327–29333, https://doi.org/10.1007/s11356-019-06078-x (2019).

    CAS  Article  Google Scholar 

  • 34.

    Amiard, J. C., Amiard-Triquet, C., Barka, S. & Pellerin, J. & Rainbow, P. S. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 76, 160–202, https://doi.org/10.1016/j.aquatox.2005.08.015 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Ki, J. S. et al. Gene expression profiling of copper-induced responses in the intertidal copepod Tigriopus japonicus using a 6K oligochip microarray. Aquat. Toxicol. 93, 177–187, https://doi.org/10.1016/j.aquatox.2009.04.004 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Kim, B.-M. et al. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp. Biochem. Phys. C Toxicol. & Pharmacol. 166, 65–74, https://doi.org/10.1016/j.cbpc.2014.07.005 (2014).

    CAS  Article  Google Scholar 

  • 37.

    Xu, K. et al. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. Fish Shellfish Immun. 82, 77–83, https://doi.org/10.1016/j.fsi.2018.08.016 (2018).

    CAS  Article  Google Scholar 

  • 38.

    Dipinto, L. M., Coull, B. C. & Chandler, G. T. Lethal and sublethal effects of the sediment-associated PCB aroclor 1254 on a meiobenthic copepod. Environ. Toxicol. Chem. 12, 1909–1918, https://doi.org/10.1002/etc.5620121017 (1993).

    CAS  Article  Google Scholar 

  • 39.

    Medina, M., Barata, C., Telfer, R. & Baird, D. J. Age- and sex-related variation in sensitivity to the pyrethroid cypermethrin in the marine copepod Acartia tonsa Dana. Arch. Environ. Con. Tox. 42, 17–22 (2002).

    CAS  Article  Google Scholar 

  • 40.

    Kadiene, E. U., Bialais, C., Ouddane, B., Hwang, J. S. & Souissi, S. Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity. Ecotoxicology 26, 1227–1239, https://doi.org/10.1007/s10646-017-1848-6 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    McManus, G. B., Wyman, K. D., Peterson, W. T. & Wurster, C. F. Factors affecting the elimination of PCBs in the marine copepod Acartia tonsa. Estuar. Coast. Shelf Sci. 17, 421–430, https://doi.org/10.1016/0272-7714(83)90127-0 (1983).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Toxværd, K., Dinh, K. V., Henriksen, O., Hjorth, M. & Nielsen, T. Impact of pyrene exposure during overwintering of the Arctic copepod Calanus glacialis. Environ. Sci. Technol. 52, 10328–10336, https://doi.org/10.1021/acs.est.8b03327 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 43.

    Koski, M., Stedmon, C. & Trapp, S. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa. Mar. Environ. Res. 129, 374–385, https://doi.org/10.1016/j.marenvres.2017.06.006 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Hansen, B. H. et al. Maternal polycyclic aromatic hydrocarbon (PAH) transfer and effects on offspring of copepods exposed to dispersed oil with and without oil droplets. J. Toxicol. Environ. Health A Curr. Issues 80, 881–894, https://doi.org/10.1080/15287394.2017.1352190 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Byrne, M., Foo, S. A., Ross, P. M. & Putnam, H. M. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. Glob. Change Biol. 26, 80–102, https://doi.org/10.1111/gcb.14882 (2020).

    ADS  Article  Google Scholar 

  • 46.

    Brander, S. M., Biales, A. D. & Connon, R. E. The role of epigenomics in aquatic toxicology. Environ. Toxicol. Chem. 36, 2565–2573, https://doi.org/10.1002/etc.3930 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Ivanina, A. V. & Sokolova, I. M. Interactive effects of metal pollution and ocean acidification on physiology of marine organisms. Curr. Zool. 61, 653–668, https://doi.org/10.1093/czoolo/61.4.653 (2015).

    Article  Google Scholar 

  • 48.

    Blewett, T. A., Simon, R. A., Turko, A. J. & Wright, P. A. Copper alters hypoxia sensitivity and the behavioural emersion response in the amphibious fish Kryptolebias marmoratus. Aquat. Toxicol. 189, 25–30, https://doi.org/10.1016/j.aquatox.2017.05.007 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Fitzgerald, J. A. et al. Sublethal exposure to copper supresses the ability to acclimate to hypoxia in a model fish species. Aquat. Toxicol. 217, https://doi.org/10.1016/j.aquatox.2019.105325 (2019).

  • 50.

    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750, https://doi.org/10.1038/s41559-018-0669-1 (2018).

    Article  PubMed  Google Scholar 

  • 51.

    Sommer, U., Peter, K. H., Genitsaris, S. & Moustaka-Gouni, M. Do marine phytoplankton follow Bergmann’s rule sensu lato? Biol. Rev. 92, 1011–1026, https://doi.org/10.1111/brv.12266 (2017).

    Article  PubMed  Google Scholar 

  • 52.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793, https://doi.org/10.1073/pnas.0902080106 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 53.

    Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiorboe, T. A global synthesis of seasonal temperature-size responses in copepods. Global Ecol. Biogeogr. 25, 988–999, https://doi.org/10.1111/geb.12460 (2016).

    Article  Google Scholar 

  • 54.

    Pan, Y. J. et al. Effects of cold selective breeding on the body length, fatty acid content, and productivity of the tropical copepod Apocyclops royi (Cyclopoida, Copepoda). J. Plankton Res. 39, 994–1003, https://doi.org/10.1093/plankt/fbx041 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563, https://doi.org/10.1242/jeb.149989 (2017).

    Article  PubMed  Google Scholar 

  • 56.

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 3, 254–258, https://doi.org/10.1038/nclimate1691 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  • 57.

    Kiørboe, T. & Sabatini, M. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120, 285–298, https://doi.org/10.3354/meps120285 (1995).

    ADS  Article  Google Scholar 

  • 58.

    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14, https://doi.org/10.1111/eva.12137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here? Glob. Change Biol. 24, 13–34, https://doi.org/10.1111/gcb.13903 (2018).

    ADS  Article  Google Scholar 

  • 60.

    Calosi, P. et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. T. R. Soc. B 368, https://doi.org/10.1098/rstb.2012.0444 (2013).

  • 61.

    Lee, Y. H., Jeong, C. B., Wang, M. H., Hagiwara, A. & Lee, J. S. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. Mar. Pollut. Bull. 153, https://doi.org/10.1016/j.marpolbul.2020.111006 (2020).

  • 62.

    Yao, Y., Wang, J., Yin, J. & Zou, X. Marine heatwaves in China’s marginal seas and adjacent offshore waters: past, present, and future. J. Geophys. Res. Oceans 125, e2019JC015801 (2020).

    ADS  Article  Google Scholar 

  • 63.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312, https://doi.org/10.1038/s41558-019-0412-1 (2019).

    ADS  Article  Google Scholar 

  • 64.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315, https://doi.org/10.1111/j.1461-0248.2008.01253.x (2008).

    Article  PubMed  Google Scholar 

  • 65.

    Vietnamese Ministry of Natural Resources and Environment. (ed Ministry of Natural Resources and Environment) 10 (Hanoi, 2015).

  • 66.

    Cai, M. G. et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 633, 1206–1216, https://doi.org/10.1016/j.scitotenv.2018.03.197 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 67.

    Landis, W. G. et al. Global climate change and contaminants, a call to arms not yet heard? Integr. Environ. Assess. 10, 483–484, https://doi.org/10.1002/ieam.1568 (2014).

    Article  Google Scholar 

  • 68.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526, https://doi.org/10.1038/s41586-018-0301-1 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 69.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790, https://doi.org/10.1126/science.1132294 (2006).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 70.

    Hwang, J. S. et al. Patterns of zooplankton distribution along the marine, estuarine, and riverine portions of the Danshuei ecosystem in northern Taiwan. Zool. Stud. 49, 335–352 (2010).

    Google Scholar 

  • 71.

    Dhanker, R., Kumar, R. & Hwang, J. S. Predation by Pseudodiaptomus annandalei (Copepoda: Calanoida) on rotifer prey: Size selection, egg predation and effect of algal diet. J. Exp. Mar. Biol. Ecol. 414, 44–53, https://doi.org/10.1016/j.jembe.2012.01.011 (2012).

    Article  Google Scholar 

  • 72.

    Golez, M. S. N., Takahashi, T., Ishimaru, T. & Ohno, A. Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida). Plankt. Biol. Ecol. 51, 15–25 (2004).

    Google Scholar 

  • 73.

    Colin, S. P. & Dam, H. G. Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and reproduction of populations of the copepod Acartia hudsonica. Harmful Algae 1, 113–125, https://doi.org/10.1016/S1568-9883(02)00007-0 (2002).

    Article  Google Scholar 

  • 74.

    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–&, https://doi.org/10.1139/m62-029 (1962).

    CAS  Article  PubMed  Google Scholar 

  • 75.

    IPCC. Climate change 2013: The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

  • 76.

    Quinn, G. P. & Michael, K. J. Experimental design and data analysis for biologists. 537 (Cambridge University Press, 2002).

  • 77.

    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10, https://doi.org/10.1890/10-0340.1 (2011).

    Article  PubMed  Google Scholar 

  • 78.

    Dinh, K. V. et al. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly. Environ. Pollut. 218, 634–643, https://doi.org/10.1016/j.envpol.2016.07.047 (2016).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Different distribution of malaria parasite in left and right extremities of vertebrate hosts translates into differences in parasite transmission

    Risk factors for African swine fever incursion in Romanian domestic farms during 2019