in

Developmental cost theory predicts thermal environment and vulnerability to global warming

  • 1.

    Mueller, C. A., Joss, J. M. P. & Seymour, R. S. The energy cost of embryonic development in fishes and amphibians, with emphasis on new data from the Australian lungfish, Neoceratodus forsteri. J. Comp. Physiol. B 181, 43–52 (2011).

    • Article
    • Google Scholar
  • 2.

    Bennett, C. E. & Marshall, D. J. The relative energetic costs of the larval period, larval swimming and metamorphosis for the ascidian Diplosoma listerianum. Mar. Freshwat. Behav. Physiol. 38, 21–29 (2005).

    • Article
    • Google Scholar
  • 3.

    Pettersen, A. K., White, C. R., Bryson-Richardson, R. J. & Marshall, D. J. Linking life-history theory and metabolic theory explains the offspring size-temperature relationship. Ecol. Lett. 22, 518–526 (2019).

    • Article
    • Google Scholar
  • 4.

    Kamler, E. Early Life History of Fish—An Energetics Approach, Vol. 4 (Chapman and Hall, 1992).

  • 5.

    Kamler, E. Parent–egg–progeny relationships in teleost fishes: an energetics perspective. Rev. Fish Biol. Fish. 15, 399–421 (2005).

    • Article
    • Google Scholar
  • 6.

    Zuo, W. Y., Moses, M. E., West, G. B., Hou, C. & Brown, J. H. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. R. Soc. B 279, 1840–1846 (2012).

    • Article
    • Google Scholar
  • 7.

    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

  • 8.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

  • 9.

    Pechenik, J. A. Larval experience and latent effects—metamorphosis is not a new beginning. Integr. Comp. Biol. 46, 323–333 (2006).

    • Article
    • Google Scholar
  • 10.

    Marshall, D. J., Pettersen, A. K. & Cameron, H. A global synthesis of offspring size variation, its eco-evolutionary causes and consequences. Funct. Ecol. 32, 1436–1446 (2018).

    • Article
    • Google Scholar
  • 11.

    Vance, R. R. On reproductive strategies in marine benthic invertebrates. Am. Nat. 107, 339–352 (1973).

    • Article
    • Google Scholar
  • 12.

    Shine, R. Manipulative mothers and selective forces: the effects of reproduction on thermoregulation in reptiles. Herpetologica 68, 289–298 (2012).

    • Article
    • Google Scholar
  • 13.

    Goller, M., Goller, F. & French, S. S. A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecol. Evol. 4, 3319–3329 (2014).

    • Article
    • Google Scholar
  • 14.

    Steele, J. H. A comparison of terrestrial and marine ecological systems. Nature 313, 355–358 (1985).

    • Article
    • Google Scholar
  • 15.

    Melampy, R. M. & Willis, E. R. Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.). Physiol. Zool. 12, 302–311 (1939).

  • 16.

    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).

    • Article
    • Google Scholar
  • 17.

    Berrigan, D. & Partridge, L. Influence of temperature and activity on the metabolic rate of adult Drosophila melanogaster. Comp. Biochem. Physiol. A 118, 1301–1307 (1997).

  • 18.

    Alton, L. A., Condon, C., White, C. R. & Angilletta, M. J. Jr Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster. Evolution 71, 145–152 (2017).

    • Article
    • Google Scholar
  • 19.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-101 (2011).

  • 20.

    Nakagawa, S. & Lagisz, M. Visualizing unbiased and biased unweighted meta-analyses. J. Evol. Biol. 29, 1914–1916 (2016).

  • 21.

    Orme, D. The caper Package: Comparative Analysis of Phylogenetics and Evolution in R. R package version 5 (2013).

  • 22.

    Michonneau, F., Brown, J. W. & Winter, D. J. rot1: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    • Article
    • Google Scholar
  • 23.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

  • 24.

    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & The, P. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    • Article
    • Google Scholar
  • 25.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

  • 26.

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

  • 27.

    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).


  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events