in

Directed species loss reduces community productivity in a subtropical forest biodiversity experiment

  • 1.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).

  • 2.

    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

  • 3.

    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).

  • 4.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  • 5.

    McKinney, M. L. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).

    • Google Scholar
  • 6.

    Vamosi, J. C. & Wilson, J. R. U. Non-random extinction leads to elevated loss of angiosperm evolutionary history. Ecology Letters 11, 1047–1053 (2008).

    • PubMed
    • Google Scholar
  • 7.

    Purvis, A., Agapow, P. M., Gittleman, J. L. & Mace, G. M. Non-random extinction and the loss of evolutionary history. Science 288, 328–330 (2000).

  • 8.

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

  • 9.

    Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).

    • Google Scholar
  • 10.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

  • 11.

    García-Valdés, R., Bugmann, H. & Morin, X. Climate change-driven extinctions of tree species affect forest functioning more than random extinctions. Divers. Distrib. 24, 906–918 (2018).

    • Google Scholar
  • 12.

    Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science 310, 1029–1031 (2005).

  • 13.

    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).

    • Google Scholar
  • 14.

    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

    • PubMed
    • Google Scholar
  • 15.

    Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553 (2017).

    • PubMed
    • Google Scholar
  • 16.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

  • 17.

    Chen, Y. et al. Positive effects of neighborhood complementarity on tree growth in a neotropical forest. Ecology 97, 776–785 (2016).

    • PubMed
    • Google Scholar
  • 18.

    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    • PubMed
    • Google Scholar
  • 19.

    Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306, 1177–1180 (2004).

  • 20.

    Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).

    • Google Scholar
  • 21.

    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

  • 22.

    Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).

    • PubMed
    • Google Scholar
  • 23.

    McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2007).

  • 24.

    Lyons, K. G. & Schwartz, M. W. Rare species loss alters ecosystem function – invasion resistance. Ecol. Lett. 4, 358–365 (2001).

    • Google Scholar
  • 25.

    Bracken, M. E. S., Friberg, S. E., Gonzalez-Dorantes, C. A. & Williams, S. L. Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc. Natl Acad. Sci. USA 105, 924–928 (2008).

  • 26.

    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    • Google Scholar
  • 27.

    Hubbell, S. P. Neutral theory and the evolution of ecological equivalence. Ecology 87, 1387–1398 (2006).

    • PubMed
    • Google Scholar
  • 28.

    Uriarte, M. et al. Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. Ecol. Lett. 13, 1503–1514 (2010).

    • PubMed
    • Google Scholar
  • 29.

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    • PubMed
    • Google Scholar
  • 30.

    Lasky, J. R. et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17, 1158–1167 (2014).

    • PubMed
    • Google Scholar
  • 31.

    Barrufol, M. et al. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8, e81246 (2013).

  • 32.

    Yang, X. et al. Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur. J. For. Res. 132, 593–606 (2013).

    • Google Scholar
  • 33.

    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    • PubMed
    • Google Scholar
  • 34.

    Chen, Y. et al. Data from: directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Figshare digital repository https://doi.org/10.6084/m9.figshare.9192629 (2020).

  • 35.

    Huang, Y. et al. Data from: impacts of species richness on productivity in a large-scale subtropical forest experiment. Dryad https://doi.org/10.5061/dryad.t86145r (2018).

  • 36.

    Stan Development Team. RStan: the R interface to Stan. R package v.2.14.1 (2019).

  • 37.

    Plummer, M. rjags: Bayesian graphical models using MCMC. R package v.4-6 (2016).

  • 38.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    • Google Scholar
  • 39.

    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    • Google Scholar
  • 40.

    Butler, D. asreml: asreml() fits the linear mixed model. R package v.3.0 (2009).

  • 41.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

  • 42.

    Kirwan, L. et al. Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function. Ecology 90, 2032–2038 (2009).

  • 43.

    R Core Team. R: A Language and Environment for Statistical Computing v.3.5.1. (R Foundation for Statistical Computing, Vienna, Austria, 2018).

    • Google Scholar
  • 44.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    • Google Scholar
  • 45.

    Chen, Y. et al. Code from: directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Figshare digital repository https://doi.org/10.6084/m9.figshare.9194555 (2020).

  • 46.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).

    • PubMed
    • Google Scholar
  • 47.

    Kröber, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).

    • PubMed
    • Google Scholar
  • 48.

    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).

    • PubMed
    • Google Scholar
  • 49.

    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

  • 50.

    Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).

    • PubMed
    • Google Scholar
  • 51.

    China National Specimen Information Infrastructure, Metadata Dataset (NSII, 2017); https://doi.org/10.15468/kmob80/


  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events