in

Disturbance in human gut microbiota networks by parasites and its implications in the incidence of depression

  • 1.

    Adamo, S. A. Modulating the modulators: parasites, neuromodulators and host behavioral change. Brain, behavior and evolution 60, 370–377 (2002).

  • 2.

    González-Tokman, D., Córdoba-Aguilar, A., González-Santoyo, I. & Lanz-Mendoza, H. Infection effects on feeding and territorial behaviour in a predatory insect in the wild. Animal Behaviour 81, 1185–1194 (2011).

    • Article
    • Google Scholar
  • 3.

    Romano, M. C., Jiménez, P., Miranda, C. & Valdez, R. A. Parasites and steroid hormones: corticosteroid and sex steroid synthesis, their role in the parasite physiology and development. Frontiers in neuroscience 9, 224 (2015).

  • 4.

    Shepherd, C. et al. Identifying the immunomodulatory components of helminths. Parasite immunology 37, 293–303 (2015).

  • 5.

    Johnson, T. P. & Nath, A. Neurological syndromes driven by postinfectious processes or unrecognized persistent infections. Current opinion in neurology 31, 318–324 (2018).

  • 6.

    Leung,  J. M.,  Graham,  A. L. &  Knowles,  S. C.  Parasite-microbiota interactions with the vertebrate gut: synthesis through an ecological lens. Frontiers in Microbiology 9 (2018).

  • 7.

    Torgerson, P. R. et al. World health organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS medicine 12, e1001920 (2015).

  • 8.

    Hall, A., Hewitt, G., Tuffrey, V. & De Silva, N. A review and meta-analysis of the impact of intestinal worms on child growth and nutrition. Maternal & child nutrition 4, 118–236 (2008).

    • Article
    • Google Scholar
  • 9.

    Guernier, V. et al. Gut microbiota disturbance during helminth infection: can it affect cognition and behaviour of children? BMC infectious diseases 17, 58 (2017).

  • 10.

    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

  • 11.

    Moya, A. & Ferrer, M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends in microbiology 24, 402–413 (2016).

  • 12.

    Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. science 307, 1915–1920 (2005).

  • 13.

    Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620 (2008).

  • 14.

    Lee, Y. K. & Mazmanian, S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 1768–1773 (2010).

  • 15.

    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences 108, 4554–4561 (2011).

  • 16.

    Mayer, E. A., Savidge, T. & Shulman, R. J. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146, 1500–1512 (2014).

  • 17.

    Sherwin, E., Sandhu, K. V., Dinan, T. G. & Cryan, J. F. May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS drugs 30, 1019–1041 (2016).

  • 18.

    Valles-Colomer,  M.  et al.  The neuroactive potential of the human gut microbiota in quality of life and depression. Nature microbiology 1 (2019).

  • 19.

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

  • 20.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559 (2014).

  • 21.

    Xu, Z. & Knight, R. Dietary effects on human gut microbiome diversity. British Journal of Nutrition 113, S1–S5 (2015).

  • 22.

    Francino, M. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Frontiers in microbiology 6, 1543 (2016).

  • 23.

    Williamson, L. L. et al. Got worms? perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain, behavior, and immunity 51, 14–28 (2016).

  • 24.

    Krogsgaard,  L. R.  et al.  Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and translational gastroenterology  9 (2018).

  • 25.

    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

  • 26.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

  • 27.

    Hutzil, S., Sandoval-Motta, S., Frank, A. & Aldana, M. Modeling the role of the microbiome in evolution. Frontiers in physiology 9, 1836 (2018).

    • Article
    • Google Scholar
  • 28.

    Roli, A., Villani, M., Filisetti, A. & Serra, R. Dynamical criticality: overview and open questions. Journal of Systems Science and Complexity 31, 647–663 (2018).

  • 29.

    Goldberger, A. L. Fractal mechanisms in the electrophysiology of the heart. IEEE Engineering in Medicine and Biology Magazine 11, 47–52 (1992).

  • 30.

    Kiyono, K., Struzik, Z. R., Aoyagi, N., Togo, F. & Yamamoto, Y. Phase transition in a healthy human heart rate. Physical review letters 95, 058101 (2005).

  • 31.

    Massobrio, P., de Arcangelis, L., Pasquale, V., Jensen, H. J. & Plenz, D. Criticality as a signature of healthy neural systems. Frontiers in systems neuroscience 9, 22 (2015).

  • 32.

    Rivera,  A. L.  et al.  Looking for biomarkers in physiological time series. In Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues, 111–131 (Springer, 2018).

  • 33.

    Goldberger, A. L. et al. Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the national academy of sciences 99, 2466–2472 (2002).

  • 34.

    Derrida, B. & Pomeau, Y. Random networks of automata: a simple annealed approximation. EPL (Europhysics Letters) 1, 45 (1986).

  • 35.

    Aldana, M. Boolean dynamics of networks with scale-free topology. Physica D: Nonlinear Phenomena 185, 45–66 (2003).

  • 36.

    Aldana, M., Balleza, E., Kauffman, S. & Resendiz, O. Robustness and evolvability in genetic regulatory networks. Journal of theoretical biology 245, 433–448 (2007).

  • 37.

    Torres-Sosa, C., Huang, S. & Aldana, M. Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS computational biology 8, e1002669 (2012).

  • 38.

    Langton, C. G. Computation at the edge of chaos: phase transitions and emergent computation. Physica D: Nonlinear Phenomena 42, 12–37 (1990).

  • 39.

    Nykter, M. et al. Critical networks exhibit maximal information diversity in structure-dynamics relationships. Physical review letters 100, 058702 (2008).

  • 40.

    Kinouchi, O. & Copelli, M. Optimal dynamical range of excitable networks at criticality. Nature physics 2, 348 (2006).

  • 41.

    Shmulevich, I., Kauffman, S. A. & Aldana, M. Eukaryotic cells are dynamically ordered or critical but not chaotic. Proceedings of the National Academy of Sciences 102, 13439–13444 (2005).

  • 42.

    Serra, R., Villani, M., Graudenzi, A. & Kauffman, S. Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. Journal of theoretical biology 246, 449–460 (2007).

  • 43.

    Balleza, E. et al. Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One 3, e2456 (2008).

  • 44.

    Daniels, B. C. et al. Criticality distinguishes the ensemble of biological regulatory networks. Physical review letters 121, 138102 (2018).

  • 45.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205 (2012).

  • 46.

    Gershenson, C. & Fernández, N. Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity 18, 29–44 (2012).

    • Article
    • Google Scholar
  • 47.

    Bak, P. & Paczuski, M. Complexity, contingency, and criticality. Proceedings of the National Academy of Sciences 92, 6689–6696 (1995).

  • 48.

    Christensen,  K. &  Moloney,  N. R.  Complexity and criticality, vol. 1 (World Scientific Publishing Company, 2005).

  • 49.

    Chin, C.-H. et al. cytohubba: identifying hub objects and sub-networks from complex interactome. BMC systems biology 8, S11 (2014).

  • 50.

    Santamaría-Bonfil, G., Gershenson, C. & Fernández, N. A package for measuring emergence, self-organization, and complexity based on shannon entropy. Frontiers in Robotics and AI 4, 10 (2017).

    • Article
    • Google Scholar
  • 51.

    Ramíre z-Carrillo, E. et al. Assessing sustainability in north america’s ecosystems using criticality and information theory. PloS one 13, e0200382 (2018).

  • 52.

    Taleb,  N. N.  (anti) fragility and convex responses in medicine. In International Conference on Complex Systems, 299–325 (Springer, 2018).

  • 53.

    López-Corona,  O. &  Padilla,  P.  Fisher information as unifying concept for criticality and antifragility, a primer hypothesis. Researchers. One (2019).

  • 54.

    EquihuaZamora,  M.  et al.  Ecosystem antifragility: Beyond integrity and resilience. PeerJ Preprints  7, e27813v1.

  • 55.

    Instituto nacional de pueblos indigenas. http://atlas.inpi.gob.mx/. 2019.

  • 56.

    Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behavioral and brain sciences 33, 61–83 (2010).

  • 57.

    Leongoméz,  J. D.  et al.  Self-reported health is related to body height and waist circumference in rural indigenous and urbanized latin-american populations. BioRxiv 562942 (2019).

  • 58.

    Hernández-Muciño,  D.  et al.  La comunidad me’phaa construye su futuro: agroecología y restauración como herramientas de desarrollo rural sustentable. Experiencias de colaboración transdisciplinaria para la sustentabilidad 66 (2018).

  • 59.

    DGIS, http://www.dgis.salud.gob.mx/contenidos/sinais/indica_gral.html.

  • 60.

    Campbell, S. J. et al. Complexities and perplexities: a critical appraisal of the evidence for soil-transmitted helminth infection-related morbidity. PLoS neglected tropical diseases 10, e0004566 (2016).

  • 61.

    INEGI. Datos. https://www.inegi.org.mx/datos/.

  • 62.

    Caporaso, J. G. et al. Qiime allows analysis of high-throughput community sequencing data. Nature methods 7, 335 (2010).

  • 63.

    Carrillo-Araujo, M. et al. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Frontiers in microbiology 6, 447 (2015).

  • 64.

    Gaona,  O.,  Gómez-Acata,  E. S.,  Cerqueda-Garcia,  D.,  Neri-Barrios,  C. X. &  Falcón,  L. I.  Fecal microbiota of different reproductive stages of the central population of the lesser-long nosed bat, leptonycteris yerbabuenae. PloS one 14 (2019).

  • 65.

    Allali, I. et al. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC microbiology 17, 194 (2017).

  • 66.

    Katoh, K. & Toh, H. Recent developments in the mafft multiple sequence alignment program. Briefings in bioinformatics 9, 286–298 (2008).

  • 67.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. Nature biotechnology 37, 852–857 (2019).

  • 68.

    McMurdie, P. J. & Holmes, S. phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PloS one 8, e61217 (2013).

  • 69.

    Wickham, H. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3, 180–185 (2011).

    • Article
    • Google Scholar
  • 70.

    Oksanen, J. et al. The vegan package. Community ecology package 10, 631–637 (2007).

    • Google Scholar
  • 71.

    Paulson, J. N., Pop, M. & Bravo, H. C. metagenomeseq: Statistical analysis for sparse high-throughput sequencing. Bioconductor package 1, 63 (2013).

    • Google Scholar
  • 72.

    Cringoli, G., Rinaldi, L., Maurelli, M. P. & Utzinger, J. Flotac: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nature protocols 5, 503 (2010).

  • 73.

    Becker, S. L. et al. Toward the 2020 goal of soil-transmitted helminthiasis control and elimination. PLoS neglected tropical diseases 12, e0006606 (2018).

  • 74.

    Team,  R. C.  et al.  R: A language and environment for statistical computing (2013).

  • 75.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498–2504 (2003).

  • 76.

    Malek, M., Ibragimov, R., Albrecht, M. & Baumbach, J. Cytogedevo–global alignment of biological networks with cytoscape. Bioinformatics 32, 1259–1261 (2015).

  • 77.

    Ibragimov,  R.,  Malek,  M.,  Guo,  J. &  Baumbach,  J.  Gedevo: an evolutionary graph edit distance algorithm for biological network alignment. In German Conference on Bioinformatics 2013 (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013).


  • Source: Ecology - nature.com

    Deep cuts in greenhouse emissions are tough but doable, experts say

    International E-waste Day aims to boost awareness of recycling electronics