in

Divergent mammalian body size in a stable Eocene greenhouse climate

  • 1.

    Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Goettinger Studien (1848).

  • 2.

    Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity Distrib 5, 165–174 (1999).

    • Article
    • Google Scholar
  • 3.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

  • 4.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evolution 26, 285–291 (2011).

    • Article
    • Google Scholar
  • 5.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nat 451, 279–283 (2008).

  • 6.

    Smith, F. A. et al. The evolution of maximum body size of terrestrial mammals. Sci. 330, 1216–1219 (2010).

  • 7.

    Alroy, J. Cope’s Rule and the dynamics of body mass evolution in North American fossil mammals. Sci. 280, 731–734 (1998).

  • 8.

    Clyde, W. C. & Gingerich, P. D. Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geol 26, 1011–1014 (1998).

  • 9.

    Secord, R. et al. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene Thermal Maximum. Sci 335, 959–962 (2012).

  • 10.

    D’Ambrosia, A. R., Clyde, W. C., Fricke, H. C., Gingerich, P. D. & Abels, H. A. Repetitive mammalian dwarfing during ancient greenhouse warming events. Science Advances 3 (2017).

  • 11.

    Mertz, D. F., Swisher, C. C., Franzen, J. L., Neuffer, F. O. & Lutz, H. Numerical dating of the Eckfeld Maar fossil site, Eifel, Germany: a calibration mark for the Eocene time scale. Naturwissenschaften 87, 270–274 (2000).

  • 12.

    Lenz, O. K., Wilde, V., Mertz, D. F. & Riegel, W. New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). Int. J. Earth Sci. 104, 873–889 (2015).

  • 13.

    Krutzsch, W. Die stratigraphische Stellung des Geiseltalprofils im Eozän und die sporenstratigraphische Untergliederung des mittleren Eozäns (in German). Zentr. Geol. Inst. Abh 26, 47–92 (1976).

    • Google Scholar
  • 14.

    Franzen, J. L. The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Annales de Paléontologie 91, 329–335 (2005).

    • Article
    • Google Scholar
  • 15.

    Hellmund, M. Letzte Grabungsaktivitäten im südwestlichen Geiseltal bei Halle (Sachsen-Anhalt, Deutschland) in den Jahren 1992 und 1993 (in German). Hercynia 30, 163–176 (2014).

    • Google Scholar
  • 16.

    Voigt, E. Preservation of soft tissues in the Eocene lignite of the Geiseltal near Halle/S. Cour. Forschungsinstitut Senckenberg 107, 325–343 (1988).

    • Google Scholar
  • 17.

    Kohring, R. & Hirsch, K. F. Crocodilian and avian eggshells from the Middle Eocene of the Geiseltal, Eastern Germany. J. Vertebrate Paleontology 16, 67–80 (1996).

    • Article
    • Google Scholar
  • 18.

    Haubold, H. Die Referenzfauna des Geiseltalium, MP levels 11 bis 13 (Mitteleozän, Lutetium) (in German). Palaeovertebrata 19, 81–93 (1989).

    • Google Scholar
  • 19.

    Matthes, H. W. Die Equiden aus dem Eozän des Geiseltales (in German). Wiss. Beitr. Martin-Luther Universität Halle-Wittenberg 2, 5–39 (1977).

    • Google Scholar
  • 20.

    Franzen, J. L. & Haubold, H. Revision der Equoidea aus den eozänen Braunkohlen des Geiseltales bei Halle (DDR) (in German). Palaeovertebrata 16, 1–34 (1986).

    • Google Scholar
  • 21.

    Franzen, J. L. Eurohippus parvulus parvulus (Mammalia, Equidae) aus der Grube Prinz von Hessen bei Darmstadt (Süd-Hessen, Deutschland) (in German). Senckenbergiana Lethaea 86, 265–269 (2006).

    • Article
    • Google Scholar
  • 22.

    Fischer, K. H. Neue Funde von Rhinocerolophiodon (n. gen.), Lophiodon, und Hyrachyus (Ceratomorpha, Perissodactyla, Mammalia) aus dem Eozän des Geiseltals bei Halle (DDR). 1. Teil: Rhinocerolophiodon (in German). Z. für geologische Wissenschaft, Berl. 5, 909–919 (1977).

    • Google Scholar
  • 23.

    Fischer, K. H. Neue Funde von Rhinocerolophiodon (n. gen.), Lophiodon, und Hyrachyus (Ceratomorpha, Perissodactyla, Mammalia) aus dem Eozän des Geiseltals bei Halle (DDR). 2. Teil: Lophiodon (in German). Z. für geologische Wissenschaft, Berl. 5, 1129–1152 (1977).

    • Google Scholar
  • 24.

    Fischer, K. H. Die tapiroiden Perissodactylen aus der eozänen Braunkohle des Geiseltales (in German). Geologie 45, 1–101 (1964).

    • Google Scholar
  • 25.

    Legendre, S. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16, 191–212 (1986).

    • Google Scholar
  • 26.

    Remy, J. A. Sur le crâne de Propalaeotherium isselanum (Mammalia, Perissodactyla, Palaeotheriidae) de Pépieux (Minervois, Sud de la France) (in French). Geodiversitas 23, 105–127 (2001).

    • Google Scholar
  • 27.

    Robinet, C., Remy, J. A., Laurent, Y., Danilo, L. & Lihoreau, F. A new genus of Lophiodontidae (Perissodactyla, Mammalia) from the early Eocene of La Borie (Southern France) and the origin of the genus Lophiodon Cuvier, 1822. Geobios 48, 25–38 (2015).

    • Article
    • Google Scholar
  • 28.

    Preuschoft, H. & Franzen, J. L. Locomotion and biomechanics in Eocene mammals from Messel. Palaeobiodiversity Palaeoenvironments 92, 459–476 (2012).

    • Article
    • Google Scholar
  • 29.

    Rink, W. J. & Schwarcz, H. P. Tests for diagenesis in tooth enamel: ESR dating signals and carbonate contents. J. Archaeological Sci 22, 251–255 (1995).

    • Article
    • Google Scholar
  • 30.

    Fricke, H. C. & O’Neil, J. R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 91–99 (1996).

  • 31.

    Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene-Oligocene transition in central North America. Nat 445, 639–642 (2007).

  • 32.

    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO, and bioapatite in different mammals. J. Archaeological Sci 32, 1459–1470 (2005).

    • Article
    • Google Scholar
  • 33.

    Sharp, Z. D., Atudorei, V. & Furrer, H. The effect of diagenesis on oxygen isotope ratios of biogenic phosphates. Am. J. Sci 300, 222–237 (2000).

  • 34.

    Fricke, H. C. & Wing, S. L. Oxygen isotope and paleobotanical estimates of temperature and δ O–latitude gradients over North America during the early Eocene. Am. J. Sci 304, 612–635 (2004).

  • 35.

    Mosbrugger, V., Utescher, T. & Dilcher, D. L. Cenozoic continental climatic evolution of Central. Europe. Proc. Natl Acad. Sci 102, 14964–14969 (2005).

  • 36.

    Pound, M. J. & Salzmann, U. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Scientific Reports 7 (2017).

  • 37.

    Grein, M., Utescher, T., Wilde, V. & Roth-Nebelsick, A. Reconstruction of the middle Eocene climate of Messel using palaeobotanical data. N. Jb. Geol. Paläont. Abh. 260, 305–318 (2011).

    • Article
    • Google Scholar
  • 38.

    Tütken, T. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the middle Eocene oil shale of Messel, Germany: Implications for their taphonomy and palaeoenvironment. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 92–109 (2014).

    • Article
    • Google Scholar
  • 39.

    Krutzsch, W., Blumenstengel, H., Kiesel, Y. & Rüffle, L. Paläobotanische Klimagliederung des Alttertiärs (Mitteleozän bis Oberoligozän) in Mitteldeutschland und das Problem der Verknüpfung mariner und kontinentaler Gliederungen (in German). Neues Jahrb. für Geologie und Paläontologie – Abhandlungen 186, 137–253 (1992).

    • Google Scholar
  • 40.

    Farquhar, G. D., Cernusak, L. A. & Barnes, B. Heavy water fractionation during transpiration. Plant. Physiol. 143, 11–18 (2007).

  • 41.

    Krumbiegel, G. Genese, Palökologie und Biostratigraphie der Fossilfundstellen im Eozän des Geiseltales (in German). Kongreß und Tagungsberichte der Martin- Luther Universität Halle-Wittenberg, Wissenschaftliche Beiträge, 113–138 (1977).

  • 42.

    Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rickaby, R. E. M. & Spötl, C. Palaeoenvironmental significance of carbon-and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. J. Geol. Soc. 166, 431–445 (2009).

  • 43.

    Bowen, G. J., Cai, Z., Fiorella, R. P. & Putman, A. L. Isotopes in the Water Cycle: Regional-to Global-Scale Patterns and Applications. Annu. Rev. Earth Planet. Sci. 47, 453–479 (2019).

  • 44.

    Evans et al. Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proc. Natl Acad. Sci. 115, 1174–1179 (2018).

  • 45.

    Winnick, M. J., Caves, J. K. & Chamberlain, C. P. A mechanistic analysis of early Eocene latitudinal gradients of isotopes in precipitation. Geophys. Res. Lett. 42, 8216–8224 (2015).

  • 46.

    Speelman, E. N. et al. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the early/middle Eocene. Earth Planet. Sci. Lett. 298, 57–65 (2010).

  • 47.

    Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO : A comparative evaluation of available geochemical proxies. Paleoceanography and Paleoclimatology 25 (2010).

  • 48.

    Secord, R., Wing, S. L. & Chew, A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology 34, 282–300 (2008).

    • Article
    • Google Scholar
  • 49.

    O’Leary, M. H. Carbon isotopes in photosynthesis. Biosci 38, 328–336 (1988).

    • Article
    • Google Scholar
  • 50.

    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl Acad. Sci. 107, 19691–19695 (2010).

  • 51.

    Carmichael et al. A model–model and data–model comparison for the early Eocene hydrological cycle. Clim. Past. 12, 455–481 (2016).

    • Article
    • Google Scholar
  • 52.

    Lyons, S. K., Smith, F. A. & Ernest, S. K. M. Macroecological patterns of mammals across taxonomic, spatial, and temporal scales. J. Mammalogy 100, 1087–1104 (2019).

    • Article
    • Google Scholar
  • 53.

    Pineda-Munoz, S., Evans, A. R. & Alroy, J. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42, 659–669 (2016).

    • Article
    • Google Scholar
  • 54.

    Smith, F. A. & Lyons, S. K. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philos. Trans. R. Soc. B 366, 2364–2378 (2011).

    • Article
    • Google Scholar
  • 55.

    Raia, P., Carotenuto, F., Passaro, F., Fulgione, D. & Fortelius, M. Ecological specialization in fossil mammals explains Cope’s rule. Am. Naturalist 179, 328–337 (2012).

  • 56.

    Morgan, M. E., Badgley, C., Gunnell, G. F., Gingerich, P. D., Kappelman, J. W. & Maas, M. C. Comparative paleoecology of Paleogene and Neogene mammalian faunas: body-size structure. Palaeogeography, Palaeoclimatology, Palaeoecology 115, 287–317 (1995).

  • 57.

    Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: the next generation. Ecol. Lett 8, 875–894 (2005).

    • Article
    • Google Scholar
  • 58.

    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evolution 28, 402–408 (2013).

    • Article
    • Google Scholar
  • 59.

    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. 104, 17707–17712 (2007).

  • 60.

    Brown, J. H. & Sibly, R. M. Life-history evolution under a production constraint. Proc. Natl Acad. Sci. 103, 17595–17599 (2006).

  • 61.

    Bechtel, A., Gratzer, R., Sachsenhofer, R. F., Gusterhuber, J., Lücke, A. & Püttmann, W. Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 262, 166–175 (2008).

    • Article
    • Google Scholar
  • 62.

    Morlo, M., Schaal, S., Mayr, G. & Seiffert, C. An annotated taxonomic list of the middle Eocene (MP 11) Vertebrata of Messel. Cour. Forschungsinstitut Senckenberg 252, 95–108 (2004).

    • Google Scholar
  • 63.

    Smith, K. T. Eocene lizards of the clade Geiseltaliellus from Messel and Geiseltal, Germany, and the early radiation of Iguanidae (Reptilia: Squamata). Bull. Peabody Mus. Nat. History 50, 219–306 (2009).

    • Article
    • Google Scholar
  • 64.

    Houde, P. W. & Haubold, H. Palaeotis weigelti restudied: a small middle Eocene ostrich (Aves: Struthioniformes). Palaeovertebrata 17, 27–42 (1987).

    • Google Scholar
  • 65.

    Erfurt, J. & Haubold, H. Artiodactyla aus den eozänen Braunkholen des Geiseltales bei Halle (DDR) (in German). Paleovertebrata 19, 131–160 (1989).

    • Google Scholar
  • 66.

    Storch, G. & Haubold, H. Additions to the Geiseltal mammalian faunas, middle Eocene: Didelphidae, Nyctitheriidae, Myrmecophagidae. Palaeovertebrata 19, 95–114 (1989).

    • Google Scholar
  • 67.

    Large, D. J. & Marshall, C. Use of carbon accumulation rates to estimate the duration of coal seams and the influence of atmospheric dust deposition on coal composition. Geol. Society, London, Spec. Publ. 404, 303–315 (2015).

  • 68.

    Koch, P. L. Isotopic reconstruction of past continental environments. Annu. Rev. Earth Planet. Sci. 26, 573–613 (1998).

  • 69.

    Kohn, M. J. & Cerling, T. E. Stable isotope compositions of biological apatite. Rev. Mineralogy Geochem 48, 455–488 (2002).

  • 70.

    Longinelli, A. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et. Cosmochimica Acta 48, 385–390 (1984).

  • 71.

    Sponheimer, M. & Lee-Thorp, J. A. Oxygen isotopes in enamel carbonate and their ecological significance. J. Archaeological Sci 26, 723–728 (1999).

    • Article
    • Google Scholar
  • 72.

    Kohn, M. J. & Welker, J. M. On the temperature correlation of δ O in modern precipitation. Earth Planet. Sci. Lett. 231, 87–96 (2005).

  • 73.

    D’Ambrosia, A. G., Clyde, W. C., Fricke, H. C. & Chew, A. E. Stable isotope patterns found in early Eocene equid tooth rows of North America: Implications for reproductive behavior and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 414, 301–319 (2014).

  • 74.

    Gulick, S. P. S. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nat 552, 225–229 (2017).

  • 75.

    Tripati, A. & Darby, D. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice. Nature Communications 9 (2018).

  • 76.

    Wilde, V. & Frankenhäuser, H. The middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany). Rev. Palaeobotany Palynology 101, 7–28 (1998).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton

    Ecological Risks Arising from the Impact of Large-scale Afforestation on the Regional Water Supply Balance in Southwest China