
Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp . Quant. Biol. 22, 415–427 (1957).
Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).
Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).
Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).
Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).
Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA 112, 442–447 (2015).
Shipley, L. A., Forbey, J. S. & Moore, B. D. Revisiting the dietary niche: when is a mammalian herbivore a specialist? Integr. Comp. Biol. 49, 274–290 (2009).
Loxdale, H. D., Lushai, G. & Harvey, J. A. The evolutionary improbability of ‘generalism’ in nature, with special reference to insects: the improbability of generalism in nature. Biol. J. Linn. Soc. Lond. 103, 1–18 (2011).
Peers, M. J. L., Thornton, D. H. & Murray, D. L. Reconsidering the specialist-generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE 7, e51488 (2012).
Abellán, P. & Ribera, I. Using phylogenies to trace the geographical signal of diversification. J. Biogeogr. 44, 2236–2246 (2017).
Brown, J. H., Mehlman, D. W. & Stevens, G. C. Spatial variation in abundance. Ecology 76, 2028–2043 (1995).
Groot, A. T. et al. Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa. Mol. Ecol. 20, 2676–2692 (2011).
Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).
Alberdi, A. & Gilbert, M. T. P. A guide to the application of Hill numbers to DNA based diversity analyses. Mol. Ecol. Resour. 19, 804–817 (2019).
Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).
Aizpurua, O. et al. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: evidence from DNA metabarcoding. Mol. Ecol. 27, 815–825 (2018).
Rebelo, H., Tarroso, P. & Jones, G. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob. Chang. Biol. 16, 561–576 (2010).
Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill Numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).
Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).
Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745 (2019).
Arrizabalaga-Escudero, A. et al. Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding. Mol. Ecol. 27, 1273–1283 (2018).
Galan, M. et al. Metabarcoding for the parallel identification of several hundred predators and their prey: application to bat species diet analysis. Mol. Ecol. Resour. 18, 474–489 (2018).
Vallejo, N. et al. The Diet of the Notch-Eared Bat (Myotis emarginatus) across the Iberian Peninsula analysed by Amplicon Metabarcoding. Hystrix, Ital. J. Mammal. 30, 59–64 (2019).
Aldasoro, M. et al. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS ONE 14, e0220081 (2019).
Ma, M. Species richness vs evenness: independent relationship and different responses to edaphic factors. Oikos 111, 192–198 (2005).
Jorge, L. R., Prado, P. I., Almeida-Neto, M. & Lewinsohn, T. M. An integrated framework to improve the concept of resource specialisation. Ecol. Lett. 17, 1341–1350 (2014).
Wilsey, B. & Stirling, G. Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Plant Ecol. 190, 259–273 (2007).
Russo, D., Jones, G. & Migliozzi, A. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implications for conservation. Biol. Conserv. 107, 71–81 (2002).
Vincent, S., Nemoz, M. & Aulagnier, S. Activity and foraging habitats of Miniopterus schreibersii (Chiroptera: Miniopteridae) in southern France: implications for its conservation. Hystrix https://doi.org/10.4404/hystrix-22.1-4524 (2010).
MacDonald, Z. G., Nielsen, S. E. & Acorn, J. H. Negative relationships between species richness and evenness render common diversity indices inadequate for assessing long-term trends in butterfly diversity. Biodivers. Conserv. 26, 617–629 (2017).
IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (2010).
Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
Maldonado, K., Bozinovic, F., Newsome, S. D. & Sabat, P. Testing the niche variation hypothesis in a community of passerine birds. Ecology 98, 903–908 (2017).
Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).
Schnitzler, H.-U., Moss, C. F. & Denzinger, A. From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 18, 386–394 (2003).
Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. Biol. Sci. 277, 1789–1797 (2010).
Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 106(Suppl 2), 19644–19650 (2009).
Belmaker, J. et al. Empirical evidence for the scale dependence of biotic interactions: scaling of biotic interactions. Glob. Ecol. Biogeogr. 24, 750–761 (2015).
de Araujo, C. B., Marcondes-Machado, L. O. & Costa, G. C. The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. J. Biogeogr. 41, 513–523 (2014).
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).
Zeale, M., Butlin, R. K. & Barker, G. Taxon‐specific P. C. R. for DNA barcoding arthropod prey in bat faeces.Mol. Ecol. 11, 236–244 (2011).
Epp, L. S. et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol. Ecol. 21, 1821–1833 (2012).
Carøe, C. et al. Single-tube library preparation for degraded DNA. Methods. Ecol. Evol. 9, 410–419 (2018).
Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes 5, 337 (2012).
Zepeda-Mendoza, M. L., Bohmann, K., Carmona Baez, A. & Gilbert, M. T. P. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Res. Notes 9, 255 (2016).
Alberdi, A., Aizpurua, O. & Gilbert, M. T. P. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).
Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
Alberdi, A. hilldiv: an R package for integral analysis of diversity based on Hill numbers. bioRxiv https://doi.org/10.1101/545665 (2019).
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3599–3609 (2010).
Chao, A. et al. An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecol. Monogr. 41, 40 (2019).
Chiu, C.-H., Jost, L. & Chao, A. Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecol. Monogr. 84, 21–44 (2014).
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
VanDerWal, J. et al. Package ‘SDMTools’. R package (R Foundation for Statistical Computing, 2014).
Alberdi, A. Analysis of environmental niche modelling projections based on Hill numbers. ENMhill https://github.com/anttonalberdi/ENMhill (2019).
Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).
Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2, 74 (2007).
Singmann, H., Bolker, B., Westfall, J. & Aust, F. afex: Analysis of factorial experiments. R package version 0.1-145 (R Foundation for Statistical Computing, 2015).
R Development Core Team. R: a language and environment for statistical computing http://www.R-project.org (2008).
Alberdi, A. et al. DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats. Zenodo https://doi.org/10.5281/zenodo.3610756 (2020).
Source: Ecology - nature.com