in

DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats

  • 1.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp . Quant. Biol. 22, 415–427 (1957).

    • Article
    • Google Scholar
  • 2.

    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    • Article
    • Google Scholar
  • 3.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

  • 4.

    Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).

    • Article
    • Google Scholar
  • 5.

    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

  • 6.

    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).

  • 7.

    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA 112, 442–447 (2015).

  • 8.

    Shipley, L. A., Forbey, J. S. & Moore, B. D. Revisiting the dietary niche: when is a mammalian herbivore a specialist? Integr. Comp. Biol. 49, 274–290 (2009).

  • 9.

    Loxdale, H. D., Lushai, G. & Harvey, J. A. The evolutionary improbability of ‘generalism’ in nature, with special reference to insects: the improbability of generalism in nature. Biol. J. Linn. Soc. Lond. 103, 1–18 (2011).

    • Article
    • Google Scholar
  • 10.

    Peers, M. J. L., Thornton, D. H. & Murray, D. L. Reconsidering the specialist-generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE 7, e51488 (2012).

  • 11.

    Abellán, P. & Ribera, I. Using phylogenies to trace the geographical signal of diversification. J. Biogeogr. 44, 2236–2246 (2017).

    • Article
    • Google Scholar
  • 12.

    Brown, J. H., Mehlman, D. W. & Stevens, G. C. Spatial variation in abundance. Ecology 76, 2028–2043 (1995).

    • Article
    • Google Scholar
  • 13.

    Groot, A. T. et al. Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa. Mol. Ecol. 20, 2676–2692 (2011).

  • 14.

    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).

  • 15.

    Alberdi, A. & Gilbert, M. T. P. A guide to the application of Hill numbers to DNA based diversity analyses. Mol. Ecol. Resour. 19, 804–817 (2019).

  • 16.

    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).

  • 17.

    Aizpurua, O. et al. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: evidence from DNA metabarcoding. Mol. Ecol. 27, 815–825 (2018).

  • 18.

    Rebelo, H., Tarroso, P. & Jones, G. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob. Chang. Biol. 16, 561–576 (2010).

  • 19.

    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill Numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).

    • Article
    • Google Scholar
  • 20.

    Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).

  • 21.

    Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, e7745 (2019).

  • 22.

    Arrizabalaga-Escudero, A. et al. Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding. Mol. Ecol. 27, 1273–1283 (2018).

  • 23.

    Galan, M. et al. Metabarcoding for the parallel identification of several hundred predators and their prey: application to bat species diet analysis. Mol. Ecol. Resour. 18, 474–489 (2018).

  • 24.

    Vallejo, N. et al. The Diet of the Notch-Eared Bat (Myotis emarginatus) across the Iberian Peninsula analysed by Amplicon Metabarcoding. Hystrix, Ital. J. Mammal. 30, 59–64 (2019).

    • Google Scholar
  • 25.

    Aldasoro, M. et al. Gaining ecological insight on dietary allocation among horseshoe bats through molecular primer combination. PLoS ONE 14, e0220081 (2019).

  • 26.

    Ma, M. Species richness vs evenness: independent relationship and different responses to edaphic factors. Oikos 111, 192–198 (2005).

    • Article
    • Google Scholar
  • 27.

    Jorge, L. R., Prado, P. I., Almeida-Neto, M. & Lewinsohn, T. M. An integrated framework to improve the concept of resource specialisation. Ecol. Lett. 17, 1341–1350 (2014).

  • 28.

    Wilsey, B. & Stirling, G. Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Plant Ecol. 190, 259–273 (2007).

    • Article
    • Google Scholar
  • 29.

    Russo, D., Jones, G. & Migliozzi, A. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implications for conservation. Biol. Conserv. 107, 71–81 (2002).

    • Article
    • Google Scholar
  • 30.

    Vincent, S., Nemoz, M. & Aulagnier, S. Activity and foraging habitats of Miniopterus schreibersii (Chiroptera: Miniopteridae) in southern France: implications for its conservation. Hystrix https://doi.org/10.4404/hystrix-22.1-4524 (2010).

  • 31.

    MacDonald, Z. G., Nielsen, S. E. & Acorn, J. H. Negative relationships between species richness and evenness render common diversity indices inadequate for assessing long-term trends in butterfly diversity. Biodivers. Conserv. 26, 617–629 (2017).

    • Article
    • Google Scholar
  • 32.

    IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (2010).

  • 33.

    Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

  • 34.

    Maldonado, K., Bozinovic, F., Newsome, S. D. & Sabat, P. Testing the niche variation hypothesis in a community of passerine birds. Ecology 98, 903–908 (2017).

  • 35.

    Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).

    • Article
    • Google Scholar
  • 36.

    Schnitzler, H.-U., Moss, C. F. & Denzinger, A. From spatial orientation to food acquisition in echolocating bats. Trends Ecol. Evol. 18, 386–394 (2003).

    • Article
    • Google Scholar
  • 37.

    Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. Biol. Sci. 277, 1789–1797 (2010).

  • 38.

    Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 106(Suppl 2), 19644–19650 (2009).

  • 39.

    Belmaker, J. et al. Empirical evidence for the scale dependence of biotic interactions: scaling of biotic interactions. Glob. Ecol. Biogeogr. 24, 750–761 (2015).

    • Article
    • Google Scholar
  • 40.

    de Araujo, C. B., Marcondes-Machado, L. O. & Costa, G. C. The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. J. Biogeogr. 41, 513–523 (2014).

    • Article
    • Google Scholar
  • 41.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    • Article
    • Google Scholar
  • 42.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

  • 43.

    Zeale, M., Butlin, R. K. & Barker, G. Taxon‐specific P. C. R. for DNA barcoding arthropod prey in bat faeces.Mol. Ecol. 11, 236–244 (2011).

  • 44.

    Epp, L. S. et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol. Ecol. 21, 1821–1833 (2012).

  • 45.

    Carøe, C. et al. Single-tube library preparation for degraded DNA. Methods. Ecol. Evol. 9, 410–419 (2018).

    • Google Scholar
  • 46.

    Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes 5, 337 (2012).

  • 47.

    Zepeda-Mendoza, M. L., Bohmann, K., Carmona Baez, A. & Gilbert, M. T. P. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Res. Notes 9, 255 (2016).

  • 48.

    Alberdi, A., Aizpurua, O. & Gilbert, M. T. P. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).

    • Article
    • Google Scholar
  • 49.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).

  • 50.

    Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

  • 51.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

  • 52.

    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

  • 53.

    Alberdi, A. hilldiv: an R package for integral analysis of diversity based on Hill numbers. bioRxiv https://doi.org/10.1101/545665 (2019).

  • 54.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    • Article
    • Google Scholar
  • 55.

    Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3599–3609 (2010).

  • 56.

    Chao, A. et al. An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecol. Monogr. 41, 40 (2019).

    • Google Scholar
  • 57.

    Chiu, C.-H., Jost, L. & Chao, A. Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecol. Monogr. 84, 21–44 (2014).

    • Article
    • Google Scholar
  • 58.

    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    • Article
    • Google Scholar
  • 59.

    VanDerWal, J. et al. Package ‘SDMTools’. R package (R Foundation for Statistical Computing, 2014).

  • 60.

    Alberdi, A. Analysis of environmental niche modelling projections based on Hill numbers. ENMhill https://github.com/anttonalberdi/ENMhill (2019).

  • 61.

    Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).

    • Article
    • Google Scholar
  • 62.

    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2, 74 (2007).

    • Google Scholar
  • 63.

    Singmann, H., Bolker, B., Westfall, J. & Aust, F. afex: Analysis of factorial experiments. R package version 0.1-145 (R Foundation for Statistical Computing, 2015).

  • 64.

    R Development Core Team. R: a language and environment for statistical computing http://www.R-project.org (2008).

  • 65.

    Alberdi, A. et al. DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats. Zenodo https://doi.org/10.5281/zenodo.3610756 (2020).


  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events