in

Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality

  • 1.

    Waggoner, P. E. Agriculture and a climate changed by more carbon dioxide. In Changing Climate: Report of the Carbon Dioxide Assessment Committee (ed. National Research Council (NRC)) 383–418 (National Academy Press, Washington, DC, 1983). https://doi.org/10.1038/s41598-020-75350-9.

    Google Scholar 

  • 2.

    Shinozaki, K., Yamaguchi-Shinozaki, K. & Seki, M. Regulatory network of gene expression in the drought and cold stress responses. J. Curr. Opin. Plant Biol. 6, 410–417 (2003).

    CAS  Google Scholar 

  • 3.

    Deng, X. et al. Improving agricultural water use efficiency in arid and semiarid areas of China. J. Agric. Water Manag. 80, 23–40 (2006).

    Google Scholar 

  • 4.

    Hussain, M. et al. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci. 194, 193–199 (2008).

    CAS  Google Scholar 

  • 5.

    Wang, W., Vinocur, B. & Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. J. Planta. 218, 1–14 (2003).

    CAS  Google Scholar 

  • 6.

    Bartels, D. & Sunkar, R. Drought and salt tolerance in plants. J. Crit. Rev. Plant Sci. 24, 23–58 (2005).

    CAS  Google Scholar 

  • 7.

    Rost, S. et al. Global potential to increase crop production through water management in rainfed agriculture. J. Environ. Res. Lett. 4, 1–9 (2009).

    Google Scholar 

  • 8.

    Miflin, B. Crop improvement in the 21st century. J Exp Bot. 51, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  • 9.

    Islam, M. R. et al. Impact of water-saving superabsorbent polymer on oat (Avena spp.) yield and quality in an arid sandy soil. J. Sci. Res. Essays. 6, 720–728 (2011).

    CAS  Google Scholar 

  • 10.

    Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10000 years ago. J. Proc. Natl. Acad. Sci. 106, 7367–7372 (2009).

    ADS  CAS  Google Scholar 

  • 11.

    Anonymous. Plant area of millet in China in 2017. Available from: https://data.chinabaogao.com/nonglinmuyu/2019/0R43PA2019.html (2019).

  • 12.

    Tolk, J., Howell, T. & Evett, S. Effect of mulch, irrigation, and soil type on water use and yield of maize. J. Soil Tilll Res. 50, 137–147 (1999).

    Google Scholar 

  • 13.

    Panda, R., Behera, S. & Kashyap, P. Effective management of irrigation water for maize under stressed conditions. J. Agric. Water Manag. 66, 181–203 (2004).

    Google Scholar 

  • 14.

    Cattivelli, L. et al. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. J. Field Crop Res. 105, 1–14 (2008).

    Google Scholar 

  • 15.

    Chaves, M. M. et al. How plants cope with water stress in the field? Photosynthesis and growth. J. Ann. Bot.-Lond. 89, 907–916 (2002).

    CAS  Google Scholar 

  • 16.

    Xu, C. et al. Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. J. Environ. Sci. Pollut. R. 22, 6112–6125 (2015).

    CAS  Google Scholar 

  • 17.

    Shah, N. & Paulsen, G. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. J. Plant Soil. 257, 219–226 (2003).

    CAS  Google Scholar 

  • 18.

    Soda, W. et al. Co-composting of acid waste bentonites and their effects on soil properties and crop biomass. J. Environ. Qual. 35, 2293–2301 (2006).

    CAS  PubMed  Google Scholar 

  • 19.

    Guiwei, Q., De Varennes, A. & Cunha-Queda, C. Remediation of a mine soil with insoluble polyacrylate polymers enhances soil quality and plant growth. J. Soil Use Manag. 24, 350–356 (2008).

    Google Scholar 

  • 20.

    Hüttermann, A., Orikiriza, L. J. B. & Agaba, H. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. J. Clean Soil. Air. Water. 37, 517–526 (2009).

    Google Scholar 

  • 21.

    Narjary, B. et al. Water availability in different soils in relation to hydrogel application. J. Geoderma 187, 94–101 (2012).

    ADS  Google Scholar 

  • 22.

    Arbona, V. et al. Hydrogel substrate amendment alleviates drought effects on young citrus plants. J. Plant Soil. 270, 73–82 (2005).

    CAS  Google Scholar 

  • 23.

    Wang, Y. et al. Influences of Millet–Peanut intercropping on photosynthetic characteristics and yield of Millet. J. Agric. Sci. Technol. 22, 153–165 (2020).

    Google Scholar 

  • 24.

    Gao, H. et al. Diurnal change of photosynthetic characteristics and response tonight intensity of seven ornamental grasses. J. Acta Prataculturae Sinica 19, 87–93 (2010).

    Google Scholar 

  • 25.

    Yordanov, I., Velikova, V. & Tsonev, T. Plant responses to drought, acclimation, and stress tolerance. J. Photosynthetica 38, 171–186 (2000).

    CAS  Google Scholar 

  • 26.

    Yangwei, P. & Yan, S. Resources characteristics and market situation of bentonites at home and Abroad. J. Metal Mine. 95–99, 105 (2012).

    Google Scholar 

  • 27.

    Fraenkel-Conrat, H., Singer, B. & Tsugita, A. Purification of viral RNA by means of bentonite. J. Virol. 14, 54–58 (1961).

    CAS  Google Scholar 

  • 28.

    Lopez-Fernandez M, et al. Microbial community changes induced by uranyl nitrate in bentonite clay microcosms. In 16th International Clay Conference (ICC). Granada, Spain (2017).

  • 29.

    Bentahar, S. et al. Removal of a cationic dye from aqueous solution by natural clay. J. Groundw. Sustain. Devel. 6, 255–262 (2018).

    Google Scholar 

  • 30.

    De Castro, M. L. F. A. et al. Adsorption of Methylene Blue dye and Cu(II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies. J. Sustain. Environ. Res. 28, 197–205 (2018).

    Google Scholar 

  • 31.

    Mi, J. et al. Effect of bentonite amendment on soil hydraulic parameters and millet crop performance in a semi-arid region. J. Field Crop Res. 212, 107–114 (2017).

    Google Scholar 

  • 32.

    Hall, D. J. M. et al. Claying and deep ripping can increase crop yields and profits on water repellent sands with marginal fertility in southern Western Australia. J. Aust. J. Soil Res. 48, 178–187 (2010).

    Google Scholar 

  • 33.

    Shi, Y., Chen, X. & Shen, S. Mechanisms of organic cementing soil aggregate formation and its theoretical models. J. Chin. J. Appl. Ecol. 13, 1495–1498 (2002).

    Google Scholar 

  • 34.

    Mi, J. et al. Effect of sandy soil amendment on Dry-farmland water-conserving characteristic and millet seeding growth. J. Irrigat. Drain. 23, 92–96 (2015).

    Google Scholar 

  • 35.

    Mi, J. et al. Effects of sandy soil amendment on soil moisture and growth status of millet with rainfed sandy soil in a semi-arid region. J. Adv. Mater. Res. 1092–1093, 1234–1242 (2015).

    Google Scholar 

  • 36.

    Jiang, P. et al. Principles and experimental verification of capillary suction method for fast measurement of field capacity. J. Trans. CSAE. 22, 1–5 (2006).

    CAS  Google Scholar 

  • 37.

    Andrenelli, M. et al. Field application of pelletized biochar: Short term effect on the hydrological properties of a silty clay loam soil. J. Agric. Water Manag. 163, 190–196 (2016).

    Google Scholar 

  • 38.

    Jones, J. Jr. Kjeldahl Method for Nitrogen Determination (Micro-Macro Publishing, Athens, 1991).

    Google Scholar 

  • 39.

    Nielsen, S. S. Food Analysis (Aspen Publishers Inc, New York, 1998).

    Google Scholar 

  • 40.

    Ganzler, K., Salgo, A. & Valkó, K. Microwave extraction: A novel sample preparation method for chromatography. J. Chromatogr. A 371, 299–306 (1986).

    CAS  Google Scholar 

  • 41.

    Min D B, Steenson D, Crude fat analysis. In Food Analysis. Vol. 2. New York: Kluwer Academic/Plenum Publishers. 113–131 (1998).

  • 42.

    Möller, J. Comparing Methods for Fibre Determination in Food and Feed, Vol. 1026712 (The Association of American Feed Control Officials, West Lafayette, 2014).

    Google Scholar 

  • 43.

    Bakass, M., Mokhlisse, A. & Lallemant, M. Absorption and desorption of liquid water by a superabsorbent polyelectrolyte: Role of polymer on the capacity for absorption of a ground. J Appl Polym. Sci. 82, 1541–1548 (2001).

    CAS  Google Scholar 

  • 44.

    Yu, J. et al. Superabsorbents and semiarid soil properties affecting water absorption. J. Soil. Sci. Soc. Am. J. 75, 2305–2313 (2011).

    ADS  CAS  Google Scholar 

  • 45.

    Sun, Z. et al. Effect of ion-type and concentration on water-retention capacity of bentonite used in geosynthetic clay liner. J. Chin. Ceram. Soc. 38, 1826–1831 (2010).

    Google Scholar 

  • 46.

    Suzuki, S. et al. Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. J. Arid Land Res. Manag. 21, 37–49 (2007).

    Google Scholar 

  • 47.

    Betti, G. et al. Size of subsoil clods affects soil–water availability in sand–clay mixtures. J. Soil Res. 54, 276–290 (2016).

    Google Scholar 

  • 48.

    Al-Omran, A. et al. Impact of natural deposits of Saudi Arabia on selected physical properties of calcareous sandy soil. J. Dirasa Agric Sci. 29, 285–294 (2002).

    Google Scholar 

  • 49.

    Tan, G. et al. Effect of super absorbent resin on the rate of maize emergence and soil moisture. J. Jilin Agric. Sci. 30, 26–27 (2004).

    Google Scholar 

  • 50.

    Zhou, L. et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. J. Geoderma. 338, 269–280 (2019).

    ADS  CAS  Google Scholar 

  • 51.

    Fang, S. et al. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. J. Int. J. Biol. Macromol. 115, 754–761 (2018).

    CAS  Google Scholar 

  • 52.

    Zhang, X. et al. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. J. Irrigation Sci. 27, 1–10 (2008).

    Google Scholar 

  • 53.

    Giri, G. S. & Schillinger, W. F. Seed priming winter wheat for germination, emergence, and yield. J. Crop Sci. 43, 2135–2141 (2003).

    Google Scholar 

  • 54.

    Jamnická, G. et al. The soil hydrogel improved photosynthetic performance of beech seedlings treated under drought. J. Plant Soil Environ. 59, 446–451 (2013).

    Google Scholar 

  • 55.

    Islam, M. R. et al. A lysimeter study of nitrate leaching, optimum fertilisation rate and growth responses of corn (Zea mays L.) following soil amendment with water-saving super-absorbent polymer. J. Sci/ Food Agric. 91, 1990–1997 (2011).

    CAS  Google Scholar 

  • 56.

    Tahir, S. & Marschner, P. Clay amendment to sandy soil—Effect of clay concentration and ped size on nutrient dynamics after residue addition. J. Soils Sediments 16, 2072–2080 (2016).

    CAS  Google Scholar 

  • 57.

    Croker, J. et al. Effects of recycled bentonite addition on soil properties, plant growth and nutrient uptake in a tropical sandy soil. J. Plant Soil. 267, 155–163 (2004).

    CAS  Google Scholar 

  • 58.

    Brix, H. The effect of water stress on the rates of photosynthesis and respiration in tomato plants and loblolly pine seedlings. J. Physiol. Plantarum. 15, 10–20 (1962).

    Google Scholar 

  • 59.

    Wang, L. et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon. J. Acta Pedologica Sinica 55, 1041–1050 (2018).

    Google Scholar 

  • 60.

    Taylor, J. R. N. & Duodu, K. G. Sorghum and millets: Grain-quality characteristics and management of quality requirements. In Cereal Grains (2nd edn) (eds Batey, I. & Miskelly, D.) 317–351 (Woodhead Publishing, Wrigley, Colin, 2017).

    Google Scholar 

  • 61.

    Abbas, M. et al. Effect of some soil amendments on yield and quality traits of sugar beet (Beta vulgaris L.) under water stress in sandy soil. J. Egypt. J. Agron. 40, 75–88 (2018).

    Google Scholar 

  • 62.

    Leila, K., Hassan, F. & Pooran, G. Effects of different irrigation and superabsorbent levels on physio-morphological traits and forage yield of millet (Pennisetum americanum L.). J. Am. Euras. J. Agric. Environ. Sci. 13, 1043–1049 (2013).

    Google Scholar 

  • 63.

    Li, X. et al. Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. J. Appl Soil Ecol. 73, 58–63 (2014).

    ADS  Google Scholar 

  • 64.

    Sojka, R. et al. Polyacrylamide in agriculture and environmental land management. J. Adv Agron. 92, 75–162 (2007).

    CAS  Google Scholar 

  • 65.

    Wang, A., Li, F. & Yang, S. Effect of polyacrylamide application on runoff, erosion, and soil nutrient loss under simulated rainfall. J. Pedosphere. 21, 628–638 (2011).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Universities should lead the way on climate action, MIT panelists say

    Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum cordatum