in

Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest

  • 1.

    Stokland, J. N., Siitonen, J. & Jonsson, B. G. (eds.) Biodiversity in dead wood (Cambridge University Press, Cambridge, 2012).

  • 2.

    Ulyshen, M. D. (ed.) Saproxylic Insects: Diversity, Ecology and Conservation (Springer, Cham, Switzerland, 2018).

  • 3.

    Speight, M. C. D. Saproxylic invertebrates and their conservation (Council of Europe, 1989).

  • 4.

    Grove, S. J. Saproxylic insect ecology and the sustainable management of forests. Annu. Rev. Ecol. Syst. 33, 1–23 (2002).

    Article  Google Scholar 

  • 5.

    Ulyshen, M. D. & Šobotník, J. An introduction to the diversity, ecology and conservation of saproxylic insects Saproxylic Insects: Diversity, Ecology and Conservation [Ulyshen, M. D. (ed.)] [1–47] (Springer, Cham, 2018).

  • 6.

    Hjältén, J. et al. Saproxylic insects and fire. Saproxylic Insects: Diversity, Ecology and Conservation [Ulyshen, M. D. (ed.)] [669–691] (Springer, Cham, 2018).

  • 7.

    Wikars, L.-O. Dependence on Fire in Wood-living Insects: An Experiment with Burned and Unburned Spruce and Birch Logs. J. Insect Conserv. 6, 1–12 (2002).

    Article  Google Scholar 

  • 8.

    Ulyshen, M. D., Horn, S., Barnes, B. & Gandhi, K. J. K. Impacts of prescribed fire on saproxylic beetles in loblolly pine logs. Insect Conserv. Diver. 3, 247–251 (2010).

    Article  Google Scholar 

  • 9.

    Boucher, J., Azeria, E. T., Ibarzabal, J. & Hébert, C. Saproxylic beetles in disturbed boreal forests: temporal dynamics, habitat associations, and community structure. Ecoscience 19, 328–343 (2012).

    Article  Google Scholar 

  • 10.

    Ulyshen, M. D., Diehl, S. V. & Jeremic, D. Termites and flooding affect microbial communities in decomposing wood. Int. Biodeter. Biodegr. 115, 83–89 (2016).

    Article  Google Scholar 

  • 11.

    Brin, A. & Bouget, C. Biotic interactions between saproxylic insect species. Saproxylic Insects: Diversity, Ecology and Conservation [Ulyshen, M. D. (ed.)] [471–514] (Springer, Cham, 2018).

  • 12.

    Boucher, P., Hébert, C., Francoeur, A. & Sirois, L. Postfire succession of ants (Hymenoptera: Formicidae) nesting in dead wood of northern boreal forest. Environ. Entomol. 44, 1316–1327 (2015).

    CAS  Article  Google Scholar 

  • 13.

    Higgins, R. J. & Lindgren, B. S. The fine scale physical attributes of coarse woody debris and effects of surrounding stand structure on its utilization by ants. Insect Biodiversity and Dead Wood: Proceedings of a Symposium for the 22nd International Congress of Entomology [Grove, S. J. & Hanula, J. L. (eds.)] [67–74] (USDA Forest Service, Southern Research Station. General Technical Report SRS-93, 2006).

  • 14.

    King, J. R., Warren, R. J. & Bradford, J. B. Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS ONE 8, e75843 (2013).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Buczkowski, G. & Bennett, G. Behavioral interactions between Aphaenogaster rudis (Hymenoptera: Formicidae) and Reticulitermes flavipes (Isoptera: Rhinotermitidae): the importance of physical barriers. J. Insect Behav. 21, 296–305 (2008).

    Article  Google Scholar 

  • 16.

    King, J. R., Warren II, R. J., Maynard, D. S. & Bradford, M. A. Ants: Ecology and impacts in dead wood. Saproxylic Insects: Diversity, Ecology and Conservation [Ulyshen, M. D. (ed.)] [237–262] (Springer, Cham, 2018).

  • 17.

    Schultz, R. P. Loblolly pine: The ecology and culture of loblolly pine (Pinus taeda L.). (USDA Forest Service Agricultural Handbook 713, 1997).

  • 18.

    Ulyshen, M. D. & Hanula, J. L. Patterns of saproxylic beetle succession in loblolly pine. Agr. Forest Entomol. 12, 187–194 (2010).

    Article  Google Scholar 

  • 19.

    Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, article 47 (2014).

  • 20.

    MacGown, J. A., Hill, J. G., Brown, R. L. & Schiefer, T. L. Ant diversity at Noxubee National Wildlife Refuge in Oktibbeha, Noxubee, and Winston Counties, Mississippi. Report #2009-01. 30 (Mississippi State University, 2009).

  • 21.

    Ulyshen, M. D. & Hanula, J. L. Habitat associations of saproxylic beetles in the southeastern United States: A comparison of forest types, tree species and wood postures. Forest Ecol. Manag. 257, 653–664 (2009).

    Article  Google Scholar 

  • 22.

    Umphrey, G. J. Morphometric discrimination among sibling species in the fulva–rudis–texana complex of the ant genus Aphaenogaster (Hymenoptera: Formicidae). Can. J. Zool. 74, 528–559 (1996).

    Article  Google Scholar 

  • 23.

    DeMarco, B. B. & Cognato, A. I. A multiple-gene phylogeny reveals polyphyly among eastern North American Aphaenogaster species (Hymenoptera: Formicidae). Zool. Scr. 45, 512–520 (2016).

    Article  Google Scholar 

  • 24.

    SAS Institute. SAS system for windows, version 9.4. Cary, NC (2013).

  • 25.

    McCune, B. & Mefford, M. J. PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon, USA. (2011).

  • 26.

    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  • 27.

    Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence. Syst. Zool. 35, 627–632 (1986).

    Article  Google Scholar 

  • 28.

    Griffith, D. M., Veech, J. A. & Marsh, C. J. Cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17 (2016).

    Article  Google Scholar 

  • 29.

    R Core Team. R: A language and environment for statistical computing (version 3.6.1). R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. (2019).

  • 30.

    Hanula, J. L., Ulyshen, M. D. & Wade, D. D. Impacts of prescribed fire frequency on coarse woody debris volume, decomposition and termite activity in the longleaf pine flatwoods of Florida. Forests 3, 317–331 (2012).

    Article  Google Scholar 

  • 31.

    Ulyshen, M. D. Interacting effects of insects and flooding on wood decomposition. PLoS ONE 9, e101867 (2014).

    ADS  Article  Google Scholar 

  • 32.

    Abensperg-Traun, M. & Milewski, A. V. Abundance and diversity of termites (Isoptera) in unburnt versus burnt vegetation at the Barrens in Mediterranean Western Australia. Aust. J. Ecol. 20, 413–417 (1995).

    Article  Google Scholar 

  • 33.

    Croft, P., Reid, N. & Hunter, J. T. Experimental burning changes the quality of fallen timber as habitat for vertebrate and invertebrate fauna: implications for fire management. Wildlife Res. 37, 574–581 (2010).

    Article  Google Scholar 

  • 34.

    Atchison, R. A., Hulcr, J. & Lucky, A. Managed Fire Frequency Significantly Influences the Litter Arthropod Community in Longleaf Pine Flatwoods. Environ. Entomol. 47, 575–585 (2018).

    Article  Google Scholar 

  • 35.

    Fearn, S. Observations on the life history and habits of the stag beetle Lamprima aurata (Latreille) (Coleoptera: Lucanidae) from Tasmania. Aust. Entomol. 23, 133–138 (1996).

    Google Scholar 

  • 36.

    Lachat, T. et al. Saproxylic beetle assemblages on native and exotic snags in a West African tropical forest. Afri. Entomol. 15, 13–24 (2007).

    Article  Google Scholar 

  • 37.

    Hanski, I. & Hammond, P. Biodiversity in boreal forests. Trends Ecol. Evol. 10, 5–6 (1995).

    Article  Google Scholar 

  • 38.

    Bertheau, C. et al. Colonisation of native and exotic conifers by indigenous bark beetles (Coleoptera: Scolytinae) in France. Forest Ecol. Manag. 258, 1619–1628 (2009).

    Article  Google Scholar 

  • 39.

    Naves, M. A. A monograph of the genus Pheidole in Florida, USA (Hymenoptera: Formicidae). Insecta Mundi 1, 53–90 (1985).

    Google Scholar 


  • Source: Ecology - nature.com

    Tiny sand grains trigger massive glacial surges

    Startup with MIT roots develops lightweight solar panels