in

Enhanced soil quality with reduced tillage and solid manures in organic farming – a synthesis of 15 years

  • 1.

    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nature Comm. 8, 1290, https://doi.org/10.1038/s41467-017-01410-w (2017).

  • 2.

    Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R. & Rayns, F. W. Managing soil fertility in organic farming systems. Soil Use Manage. 18, 239–247, https://doi.org/10.1079/sum2002131 (2002).

    • Article
    • Google Scholar
  • 3.

    Peigne, J., Ball, B. C., Roger-Estrade, J. & David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manage. 23, 129–144, https://doi.org/10.1111/j.1475-2743.2006.00082.x (2007).

    • Article
    • Google Scholar
  • 4.

    Montgomery, D. R. Dirt: The Erosion of Civilizations. (University of California Press, 2007).

  • 5.

    Lal, R., Reicosky, D. C. & Hanson, J. D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 93, 1–12, https://doi.org/10.1016/j.still.2006.11.004 (2007).

    • Article
    • Google Scholar
  • 6.

    Mäder, P. & Berner, A. Development of reduced tillage systems in organic farming in Europe. Renew. Agr. Food Syst. 27, 7–11, https://doi.org/10.1017/S1742170511000470 (2012).

    • Article
    • Google Scholar
  • 7.

    Zikeli, S. & Gruber, S. Reduced tillage and no-till in organic farming systems, Germany – Status quo, potentials and challenges. Agriculture 7, 35, https://doi.org/10.3390/agriculture7040035 (2017).

    • Article
    • Google Scholar
  • 8.

    CTIC. Tillage Type Definitions, https://www.ctic.org/CRM/ (2018).

  • 9.

    Derpsch, R., Friedrich, T., Kassam, A. & Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 3, 1–25, https://doi.org/10.3965/j.issn.1934-6344.2010.01.0-0 (2010).

    • Article
    • Google Scholar
  • 10.

    Kniss, A. R. Long-term trends in the intensity and relative toxicity of herbicide use. Nature Comm. 8, 14865, https://doi.org/10.1038/ncomms14865 (2017).

  • 11.

    Dang, Y. P. et al. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Till. Res. 152, 115–123, https://doi.org/10.1016/j.still.2014.12.013 (2015).

    • Article
    • Google Scholar
  • 12.

    Silva, V. et al. Pesticide residues in European agricultural soils – A hidden reality unfolded. Sci. Total Environ. 653, 1532–1545, https://doi.org/10.1016/j.scitotenv.2018.10.441 (2019).

  • 13.

    Vincent-Caboud, L. et al. Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agron. Sustain. Dev. 39, 45, https://doi.org/10.1007/s13593-019-0590-2 (2019).

    • Article
    • Google Scholar
  • 14.

    Barkema, H. W. et al. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 98, 7426–7445, https://doi.org/10.3168/jds.2015-9377 (2015).

  • 15.

    Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697, https://doi.org/10.1126/science.1071148 (2002).

  • 16.

    Raupp, J. In Sustainable Management of Soil Organic Matter (eds. Rees, R. M., Ball, B. C., Campbell, C. D., & Watson, C. A.) Ch. 4.10, 301–308 (CABI Publishing, 2001).

  • 17.

    Bünemann, E. K. et al. Soil quality – A critical review. Soil Biol. Biochem. 120, 105–125, https://doi.org/10.1016/j.soilbio.2018.01.030 (2018).

  • 18.

    Berner, A. et al. Crop yield and soil fertility response to reduced tillage under organic management. Soil Till. Res. 101, 89–96, https://doi.org/10.1016/j.still.2008.07.012 (2008).

    • Article
    • Google Scholar
  • 19.

    Steiner, R. Agriculture, a course of eight lectures. (Bio-Dynamic Agricultural Association, 1974).

  • 20.

    Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agr. Ecosyst. Environ. 118, 273–284, https://doi.org/10.1016/j.agee.2006.05.022 (2007).

    • Article
    • Google Scholar
  • 21.

    Tabatabai, M. A. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (eds. Page, A. L., Miller, R. H., & Keeney, D. R.) 903–947 (Soil Science Society of America, Madison, WI, 1982).

  • 22.

    Kuntz, M. et al. Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 56, 251–260, https://doi.org/10.1016/j.pedobi.2013.08.005 (2013).

    • Article
    • Google Scholar
  • 23.

    Säle, V. et al. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 84, 38–52, https://doi.org/10.1016/j.soilbio.2015.02.005 (2015).

  • 24.

    Krauss, M. et al. Tillage system affects fertilizer-induced nitrous oxide emissions. Biol. Fert. Soils 53, 49–59, https://doi.org/10.1007/s00374-016-1152-2 (2017).

  • 25.

    Sans, F. X., Berner, A., Armengot, L. & Mäder, P. Tillage effects on weed communities in an organic winter wheat–sunflower–spelt cropping sequence. Weed Res. 51, 413–421, https://doi.org/10.1111/j.1365-3180.2011.00859.x (2011).

    • Article
    • Google Scholar
  • 26.

    Bàrberi, P. & Lo Cascio, B. Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Res. 41, 325–340, https://doi.org/10.1046/j.1365-3180.2001.00241.x (2001).

    • Article
    • Google Scholar
  • 27.

    Høgh-Jensen, H., Loges, R., Jørgensen, F. V., Vinther, F. P. & Jensen, E. S. An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agricultural Systems 82, 181–194, https://doi.org/10.1016/j.agsy.2003.12.003 (2004).

    • Article
    • Google Scholar
  • 28.

    Oberson, A. et al. Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371, 237–255, https://doi.org/10.1007/s11104-013-1666-4 (2013).

  • 29.

    Jensen, H., Loges, R., V Jørgensen, F., Vinther, F. & Jensen, E. An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Vol. 82 (2004).

  • 30.

    R: A language and environment for statistical computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).

  • 31.

    nlme: Linear and Nonlinear Mixed Effects Models v. R package version 3.1–137 (2018).

  • 32.

    Fontana, M., Berner, A., Mäder, P., Lamy, F. & Boivin, P. Soil organic carbon and soil bio-physicochemical properties as co-Influenced by tillage treatment. Soil Sci. Soc. Am. J. 79, 1435–1445, https://doi.org/10.2136/sssaj2014.07.0288 (2015).

  • 33.

    Bongiorno, G. et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in. Europe. Ecol. Ind. 99, 38–50, https://doi.org/10.1016/j.ecolind.2018.12.008 (2019).

  • 34.

    Krauss, M. et al. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley – winter wheat cropping sequence. Agr. Ecosyst. Environ. 239, 324–333, https://doi.org/10.1016/j.agee.2017.01.029 (2017).

  • 35.

    Luo, Z. K., Wang, E. L. & Sun, O. J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agr. Ecosyst. Environ. 139, 224–231, https://doi.org/10.1016/j.agee.2010.08.006 (2010).

  • 36.

    Meurer, K. H. E., Haddaway, N. R., Bolinder, M. A. & Katterer, T. Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil-A systematic review using an ESM approach. Ear. Sci. Rev. 177, 613–622, https://doi.org/10.1016/j.earscirev.2017.12.015 (2018).

  • 37.

    Neugschwandtner, R. W., Liebhard, P., Kaul, H. P. & Wagentristl, H. Soil chemical properties as affected by tillage and crop in a long-term field experiment. Plant Soil Environ. 60, 57–62, https://doi.org/10.17221/879/2013-pse (2014).

    • Article
    • Google Scholar
  • 38.

    Cook, R. L. & Trlica, A. Tillage and Fertilizer Effects on Crop Yield and Soil Properties over 45 Years in Southern Illinois. Anglais 108, 415–426, https://doi.org/10.2134/agronj2015.0397 (2016).

  • 39.

    Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569, https://doi.org/10.2136/sssaj2004.0347 (2006).

  • 40.

    Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356, https://doi.org/10.1007/s11104-004-0907-y (2005).

  • 41.

    Bai, Z. et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agr. Ecosyst. Environ. 265, 1–7, https://doi.org/10.1016/j.agee.2018.05.028 (2018).

    • Article
    • Google Scholar
  • 42.

    Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397, https://doi.org/10.1016/j.apsoil.2010.10.002 (2010).

    • Article
    • Google Scholar
  • 43.

    Zhang, X. F. et al. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Till. Res. 178, 99–107, https://doi.org/10.1016/j.still.2017.12.020 (2018).

  • 44.

    Kaurin, A. et al. Consequences of minimum soil tillage on abiotic soil properties and composition of microbial communities in a shallow Cambisol originated from fluvioglacial deposits. Biol. Fert. Soils 51, 923–933, https://doi.org/10.1007/s00374-015-1037-9 (2015).

  • 45.

    Mangalassery, S., Mooney, S. J., Sparkes, D. L., Fraser, W. T. & Sjogersten, S. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur. J. Soil Biol. 68, 9–17, https://doi.org/10.1016/j.ejsobi.2015.03.001 (2015).

  • 46.

    Börstler, B., Thiéry, O., Sykorova, Z., Berner, A. & Redecker, D. Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol. Ecol. 19, 1497–1511, https://doi.org/10.1111/j.1365-294X.2010.04590.x (2010).

  • 47.

    Mbuthia, L. W. et al. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 89, 24–34, https://doi.org/10.1016/j.soilbio.2015.06.016 (2015).

  • 48.

    Jansa, J. et al. Soil tillage affects the comunity structure of mycorrhizal fungi in maize roots. Ecol. Appl. 13, 1164–1176, https://doi.org/10.1890/1051-0761(2003)13 (2003).

    • Article
    • Google Scholar
  • 49.

    Rousk, J., Brookes, P. C. & Baath, E. Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Appl. Environ. Microbiol. 75, 1589–1596, https://doi.org/10.1128/aem.02775-08 (2009).

  • 50.

    Gadermaier, F., Berner, A., Fließbach, A., Friedel, J. K. & Mäder, P. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agr. Food Syst. 27, 1–13, https://doi.org/10.1017/S1742170510000554 (2012).

    • Article
    • Google Scholar
  • 51.

    Briones, M. J. I. & Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Global Change Biol. 23, 4396–4419, https://doi.org/10.1111/gcb.13744 (2017).

  • 52.

    Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683, https://doi.org/10.1038/nclimate2292 (2014).

  • 53.

    Krauss, M. et al. Reduced tillage in temperate organic farming: implications for crop management and forage production. Soil Use Manage. 26, 12–20, https://doi.org/10.1111/j.1475-2743.2009.00253.x (2010).

    • Article
    • Google Scholar
  • 54.

    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. Isme J. 9, 1177, https://doi.org/10.1038/ismej.2014.210 (2014).

  • 55.

    Heinze, S., Oltmanns, M., Joergensen, R. G. & Raupp, J. Changes in microbial biomass indices after 10 years of farmyard manure and vegetal fertilizer application to a sandy soil under organic management. Plant Soil 343, 221–234, https://doi.org/10.1007/s11104-010-0712-8 (2011).

  • 56.

    Heinze, S., Raupp, J. & Joergensen, R. G. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 328, 203–215, https://doi.org/10.1007/s11104-009-0102-2 (2010).

  • 57.

    Carpenter-Boggs, L., Kennedy, A. C. & Reganold, J. P. Organic and biodynamic management: Effects on soil biology. Soil Sci. Soc. Am. J. 64, 1651–1659, https://doi.org/10.2136/sssaj2000.6451651x (2000).

  • 58.

    Zaller, J. G. & Kopke, U. Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol. Fert. Soils 40, 222–229, https://doi.org/10.1007/s00374-004-0772-0 (2004).

    • Article
    • Google Scholar
  • 59.

    Faust, S. et al. Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization. Appl. Soil Ecol. 114, 82–89, https://doi.org/10.1016/j.apsoil.2017.03.006 (2017).

    • Article
    • Google Scholar
  • 60.

    Soane, B. D. et al. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Till. Res. 118, 66–87, https://doi.org/10.1016/j.still.2011.10.015 (2012).

    • Article
    • Google Scholar
  • 61.

    Cooper, J. et al. Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis. Agron. Sust. Dev. 36, 22, https://doi.org/10.1007/s13593-016-0354-1 (2016).

  • 62.

    Hofmeijer, M. A. J. et al. Effects of Reduced Tillage on Weed Pressure, Nitrogen Availability and Winter Wheat Yields under Organic Management. Agronomy 9, 180, https://doi.org/10.3390/agronomy9040180 (2019).

  • 63.

    Munkholm, L. J., Schjønning, P. & Rasmussen, K. J. Non-inversion tillage effects on soil mechanical properties of a humid sandy loam. Soil Till. Res. 62, 1–14, https://doi.org/10.1016/S0167-1987(01)00205-7 (2001).

    • Article
    • Google Scholar
  • 64.

    Armengot, L., Berner, A., Blanco-Moreno, J., Mäder, P. & Sans, F. X. Long-term feasibility of reduced tillage in organic farming. Agron. Sustain. Dev. 35, 339–346, https://doi.org/10.1007/s13593-014-0249-y (2015).

    • Article
    • Google Scholar
  • 65.

    Raupp, J. & Konig, U. J. Biodynamic preparations cause opposite yield effects depending upon yield levels. Biol. Agr. Hort. 13, 175–188, https://doi.org/10.1080/01448765.1996.9754776 (1996).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Chance and necessity in the pleiotropic consequences of adaptation for budding yeast

    How plants protect themselves from sun damage