in

Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems

  • 1.

    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Chang. Biol. 20, 544–554 (2014).

  • 2.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82 (2017).

  • 3.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).

  • 4.

    Heery, E. C. et al. Urban coral reefs: Degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar. Pollut. Bull. 135, 654–681 (2018).

  • 5.

    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).

  • 6.

    Pandolfi, J. M. & Jackson, J. B. Ecological persistence interrupted in Caribbean coral reefs. Ecol. Lett. 9, 818–826 (2006).

    • PubMed
    • Google Scholar
  • 7.

    Pinheiro, H. T., Eyal, G. G., Shepherd, B. B. & Rocha, L. A. Ecological insights from environmental disturbances in mesophotic coral ecosystems. Ecosphere 10 (2019).

  • 8.

    Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 283 (2017).

    • Google Scholar
  • 9.

    Koziol, A. A. et al. Environmental DNA metabarcoding studies are critically affected by substrate selection. Mol. Ecol. Res. 19, 366–376 (2019).

    • CAS
    • Google Scholar
  • 10.

    Stat, M. M. et al. Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv. Biol. 33, 196–205 (2019).

    • PubMed
    • Google Scholar
  • 11.

    Stat, M. M. et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 12240 (2017).

  • 12.

    Boussarie, G. G. et al. Environmental DNA illuminates the dark diversity of sharks. Sci. Adv. 4, eaap9661 (2018).

  • 13.

    DiBattista, J. D. et al. Digging for DNA at depth: rapid universal metabarcoding surveys (RUMS) as a tool to detect coral reef biodiversity across a depth gradient. PeerJ 7, e6379 (2019).

  • 14.

    Chariton, A. A. et al. Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environmental Pollution 203, 165–174 (2015).

  • 15.

    Berry, T. E. et al. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLoS Genet. 15, e1007943 (2019).

  • 16.

    De Vargas, C. C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    • PubMed
    • Google Scholar
  • 17.

    Deagle, B. E. et al. Genetic monitoring of open ocean biodiversity: An evaluation of DNA metabarcoding for processing continuous plankton recorder samples. Mol. Ecol. Res. 18, 391–406 (2018).

    • CAS
    • Google Scholar
  • 18.

    Pearman, J. K., Anlauf, H. H., Irigoien, X. X. & Carvalho, S. S. Please mind the gap –Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar. Env. Res. 118, 20–30 (2016).

    • CAS
    • Google Scholar
  • 19.

    Ransome, E. E. et al. The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS One 12, e0175066 (2017).

  • 20.

    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).

  • 21.

    Nishihira, M. M. & Veron, J. E. N. Hermatypic corals of Japan. Kaiyusha, Tokyo, 439 (1995).

  • 22.

    Tsuchiya, M. M., Nadaoka, K. K., Kayanne, H. H. & Yamano, H. H. Coral Reefs of Japan, Coral Reefs of Japan (2004).

  • 23.

    Hongo, C. C. & Yamano, H. H. Species-specific responses of corals to bleaching events on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995–2009). PloS One 8, e60952 (2013).

  • 24.

    Motomura, H., Hagiwara, K., Senou, H. & Nakae, M. (eds.) Identification guide to fishes of the Amami Islands, Japan. Kagoshima University Museum, Kagoshima, Yokosuka City Museum, Yokosuka, Kanagawa Prefectural Museum of Natural History, Odawara, and National Museum of Nature and Science, Tsukuba. (2018).

  • 25.

    Mochida, I. I. & Motomura, H. H. An annotated checklist of marine and freshwater fishes of Tokunoshima Island in the Amami Islands, Kagoshima, southern Japan, with 214 new records. Bulletin of the Kagoshima University Museum 10, 1–80 (2018).

    • Google Scholar
  • 26.

    Reimer, J. D. et al. Marine biodiversity research in the Ryukyu Islands, Japan: Current status and trends. PeerJ 7, e6532 (2019).

  • 27.

    Nakano, Y. Y. Direct impacts of coastal development. In Ministry of the Environment & Japanese Coral Reef Society (eds.), Coral Reefs of Japan (Chapter 2, pp. 60–63.), Tokyo, Japan: Ministry of the Environment (2004).

  • 28.

    Reimer, J. D. et al. Effects of causeway construction on environment and biota of subtropical tidal flats in Okinawa, Japan. Mar. Pollut. Bull. 94, 153–167 (2015).

  • 29.

    Masucci, G. D. & Reimer, J. D. Expanding walls and shrinking beaches: Loss of natural coastline in Okinawa Island, Japan. PeerJ in press (2019).

  • 30.

    Ramos, A. A., Inoue, Y. Y. & Ohde, S. S. Metal contents in Porites corals: Anthropogenic input of river run-off into a coral reef from an urbanized area, Okinawa. Mar. Pollut. Bull. 48, 281–94 (2004).

  • 31.

    Imo, S. T. et al. Distribution and possible impacts of toxic organic pollutants on coral reef ecosystems around Okinawa Island, Japan. Pac. Sci. 62, 317–326 (2008).

    • CAS
    • Google Scholar
  • 32.

    Shilla, D. J., Mimura, I. I., Takagi, K. K. & Tsuchiya, M. M. Preliminary survey of the nutrient discharge characteristics of Okinawa Rivers, and their potential effects on inshore coral reefs. Galaxea, JCRS 15, 172–181 (2013).

    • Google Scholar
  • 33.

    Yamano, H. H. et al. An integrated approach to tropical and subtropical island conservation. J. Ecol. Env. 38, 271–279 (2015).

    • Google Scholar
  • 34.

    Okinawa Prefecture. 2019. February 2019 census report. https://www.pref.okinawa.jp/toukeika/estimates/2019/pop201903.pdf [08 April (2019).

  • 35.

    Kayanne, H. H., Suzuki, R. R. & Liu, G. G. Bleaching in the Ryukyu Islands in 2016 and associated Degree Heating Week threshold. Coral Reef Studies 19, 17–18 (2017).

    • Google Scholar
  • 36.

    Ministry of the Environment. Iriomote-Ishigaki National Park Survey: results of coral bleaching phenomenon of Sekisei lagoon. http://kyushu.env.go.jp/naha/pre_2017/post_28.html. (in Japanese) (2017).

  • 37.

    Masucci, G. D., Biondi, P. P., Negro, E. E. & Reimer, J. D. After the long summer: Death and survival of coral communities in the shallow waters of Kume island, from the Ryukyu archipelago. Reg. Stud. Mar. Sci. 100578 (2019).

  • 38.

    Proulx, S. R., Promislow, D. E. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 345–353 (2005).

    • PubMed
    • Google Scholar
  • 39.

    Martín, G. G. & de los Reyes Fernández, M. M. Diatoms as indicators of water quality and ecological status: Sampling, analysis and some ecological remarks. Ecol. Water Qual. 9, 183–204 (2012).

    • Google Scholar
  • 40.

    Mann, D. G. The species concept in diatoms. Phycologia 38, 437–495 (1999).

    • Google Scholar
  • 41.

    Shade, A. A. Diversity is the question, not the answer. ISME Journal 11, 1–6 (2017).

    • PubMed
    • Google Scholar
  • 42.

    Ellis, J. J. et al. Cross shelf benthic biodiversity patterns in the Southern Red Sea. Sci. Rep. 7, 1–14 (2017).

    • Google Scholar
  • 43.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

  • 44.

    Townsend, C. R., Scarsbrook, M. R. & Dolédec, S. S. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol. Oceanogr. 42, 938–949 (1997).

    • ADS
    • Google Scholar
  • 45.

    Cordier, T. T. et al. Multi-marker eDNA metabarcoding survey to assess the environmental impact of three offshore gas platforms in the North Adriatic Sea (Italy). Mar. Environ. Res. 146, 24–34 (2019).

  • 46.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

  • 47.

    Learner, M. A. The distribution and ecology of the Naididae (Oligochaeta) which inhabit the filter-beds of sewage-works in Britain. Water Res. 13, 1291–1299 (1979).

    • Google Scholar
  • 48.

    Fonseca, V. G. et al. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat. Comm. 1, 98 (2010).

    • ADS
    • Google Scholar
  • 49.

    Lambshead, P. J. D. in Nematode Morphology, Physiology and Ecology Vol. 1 (eds Chen, Z., Chen, S. & Dickson, D.) 438–492, Tsinghua Univ Press (2004).

  • 50.

    Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Res. 18, 927–939 (2018).

    • CAS
    • Google Scholar
  • 51.

    Warwick, R. M. A new method for detecting pollution effects on marine microbenthic communities. Mar. Biol. 92, 557–562 (1986).

    • Google Scholar
  • 52.

    Dean, H. K. (2001) Capitellidae (Annelida: Polychaeta) from the Pacific Coast of Costa Rica. Revista de Biología Tropical 69–84.

  • 53.

    Holman, L. E. et al. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 9, 1–10 (2019).

    • CAS
    • Google Scholar
  • 54.

    Hoeksema, B. W. & De Voogd, N. J. On the run: free-living mushroom corals avoiding interaction with sponges. Coral Reefs 31, 455–459 (2012).

    • ADS
    • Google Scholar
  • 55.

    Bell, J. J., Davy, S. K., Jones, T. T., Taylor, M. W. & Webster, N. S. Could some coral reefs become sponge reefs as our climate changes? Glob. Chang. Biol. 19, 2613–2624 (2013).

  • 56.

    Tylianakis, J. M., Laliberté, E. E., Nielsen, A. A. & Bascompte, J. J. Conservation of species interaction networks. Biol. Cons. 143, 2270–2279 (2010).

    • Google Scholar
  • 57.

    Karimi, B. B. et al. Microbial diversity and ecological networks as indicators of environmental quality. Environ. Chem. Lett. 15, 265–281 (2017).

    • CAS
    • Google Scholar
  • 58.

    Zhou, J. J., Deng, Y. Y., Luo, F. F., He, Z. Z. & Yang, Y. Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, 1–9 (2011).

    • Google Scholar
  • 59.

    Lupatini, M. M. et al. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci. 2, 1–11 (2014).

    • Google Scholar
  • 60.

    Karimi, B. B., Meyer, C. C., Gilbert, D. D. & Bernard, N. N. Air pollution below WHO levels decreases by 40% the links of terrestrial microbial networks. Environ. Chem. Lett. 14, 467–475 (2016).

    • CAS
    • Google Scholar
  • 61.

    Zappelini, C. C. et al. Diversity and complexity of microbial communities from a chlor-alkali tailings dump. Soil Biol. Biochem. 90, 101–110 (2015).

    • CAS
    • Google Scholar
  • 62.

    Graham, S. E., Chariton, A. A. & Landis, W. G. Using Bayesian networks to predict risk to estuary water quality and patterns of benthic environmental DNA in Queensland. Integr. Environ. Assess. Manag. 15, 93–111 (2019).

  • 63.

    Blake, J. A. & Arnofsky, P. L. Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402, 57–106 (1999).

    • Google Scholar
  • 64.

    Springer, S. A. & Crespi, B. J. Adaptive gamete-recognition divergence in a hydridizing Mytilus population. Evolution 61, 772–783 (2007).

  • 65.

    McCann, K. S. The diversity–stability debate. Nature 405, 228 (2000).

  • 66.

    Balvanera, P. P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    • PubMed
    • Google Scholar
  • 67.

    Scheffer, M. M. et al. Early-warning signals for critical transitions. Nature 461, 53 (2009).

  • 68.

    Work, T. M., Aeby, G. S. & Maragos, J. E. Phase shift from a coral to a corallimorph-dominated reef associated with a shipwreck on Palmyra Atoll. PLoS One 3, e2989 (2008).

  • 69.

    Yang, S. Y., Bourgeois, C. C., Ashworth, C. D. & Reimer, J. D. Palythoa zoanthid ‘barrens’ in Okinawa: examination of possible environmental causes. Zool. Stud. 52, 39 (2013).

    • Google Scholar
  • 70.

    Cruz, I. C., Meira, V. H., de Kikuchi, R. K. & Creed, J. C. The role of competition in the phase shift to dominance of the zoanthid Palythoa cf. variabilis on coral reefs. Mar. Env. Res. 115, 28–35 (2016).

    • CAS
    • Google Scholar
  • 71.

    Wee, H. B. et al. Zoantharian abundance in coral reef benthic communities at Terengganu Islands, Malaysia. Reg. Stud. Mar. Sci. 12, 58–63 (2017).

    • Google Scholar
  • 72.

    Wilkinson, S. P., Stat, M. M., Bunce, M. M. & Davy, S. K. Taxonomic identification of environmental DNA with informatic sequence classification trees. Preprint at 10.7287/peerj.preprints.26812v1 (2018).

  • 73.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    • CAS
    • Google Scholar
  • 74.

    West, K. K. & van Woesik, R. R. Spatial and temporal variance of river discharge on Okinawa (Japan): inferring the temporal impact on adjacent coral reefs. Mar. Pollut. Bull. 42, 864–872 (2001).

  • 75.

    Roberts, C. M. Effects of fishing on the ecosystem structure of coral reefs. Conserv. Biol. 9, 988–995 (1995).

    • Google Scholar
  • 76.

    Barker, N. H. & Roberts, C. M. Scuba diver behaviour and the management of diving impacts on coral reefs. Biol. Conserv. 120, 481–489 (2004).

    • Google Scholar
  • 77.

    Mottaghi, A. A., Shimomura, M. M., Wee, H. B. & Reimer, J. D. Investigating the effects of disturbed beaches on crustacean biota in Okinawa, Japan. Reg. Stud. Mar. Sci. 10, 75–80 (2017).

    • Google Scholar
  • 78.

    Gomez, E. D. & Alcala, A. C. Status of Philippine coral reef. The project, Int. Symp. Biogeogr. Evol. S. Hem. Auckland New Zealand 2, 663–669 (1978).

    • Google Scholar
  • 79.

    Van Woesik, R. R., Ripple, K. K. & Miller, S. L. Macroalgae reduces survival of nursery‐reared Acropora corals in the Florida reef tract. Restor. Ecol. 26, 563–569 (2018).

    • Google Scholar
  • 80.

    Pochon, X. X., Bott, N. J., Smith, K. F. & Wood, S. A. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests. PloS One 8, e73935 (2013).

  • 81.

    Brian, J. I., Davy, S. S. & Wilkinson, S. P. Elevated Symbiodiniaceae richness at Atauro Island (Timor-Leste): a highly biodiverse reef system. Coral Reefs 38, 123–136 (2019).

    • ADS
    • Google Scholar
  • 82.

    Rix, L. L. et al. Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Sci. Rep. 6, 18715 (2016).

  • 83.

    Drummond, A. J. et al. Geneious v 4.8.4, Available from http://www.geneious.com (2009).

  • 84.

    Huson, D. H. & Weber, N. N. Microbial community analysis using MEGAN. Methods Enzymol. 531, 465–485 (2013).

  • 85.

    WoRMS Editorial Board, World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2019-08-10. https://doi.org/10.14284/170 (2017).

  • 86.

    Faust, K. K. & Raes, J. J. CoNet app: inference of biological association networks using Cytoscape. F1000Research 5 (2016).

  • 87.

    Brown, M. B. 400: a method for combining non-independent, one-sided tests of significance. Biometrics 31, 987–992 (1975).

    • MATH
    • Google Scholar
  • 88.

    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. S. 48, 25–48 (2017).

    • Google Scholar
  • 89.

    Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).

  • 90.

    Saito, R. R. et al. A travel guide to Cytoscape plugins. Nature Methods 9, 1069 (2012).

  • 91.

    Assenov, Y. Y., Ramírez, F. F., Schelhorn, S. E., Lengauer, T. T. & Albrecht, M. M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).

  • 92.

    Dong, J. J. & Horvath, S. S. Understanding network concepts in modules. BMC Syst. Biol. 1, 24 (2007).

  • 93.

    Yachi, S. S. & Loreau, M. M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. PNAS 96, 1463–1468 (1999).

  • 94.

    Clarke, K. K. & Gorley, R. R. PRIMER V7: User Manual/tutorial. PRIMER-E Ltd, Plymouth, UK, pp. 296 (2015).

  • 95.

    Dufrêne, M. M. & Legendre, P. P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    • Google Scholar
  • 96.

    De Cáceres, M. M. & Legendre, P. P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).

    • PubMed
    • Google Scholar
  • 97.

    Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing (2015).

  • 98.

    Oksanen, J. J. et al. vegan: Community Ecology Package. R package version 2, 5–4 (2019).

    • Google Scholar

  • Source: Ecology - nature.com

    Aphid-infested beans divert ant attendance from the rosy apple aphid in apple-bean intercropping

    A scientist turns to entrepreneurship