in

Experimental neoichnology of post-autotomy arm movements of sea lilies and possible evidence of thrashing behaviour in Triassic holocrinids

  • 1.

    Maginnis, T. L. The cost of autotomy and regeneration in animals: a review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).

    Article  Google Scholar 

  • 2.

    Arnold, E. N. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169. https://doi.org/10.1080/00222938400770131 (2007).

    Article  Google Scholar 

  • 3.

    Oji, T. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoids Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22, 339–351. https://doi.org/10.1017/S0094837300016328 (1996).

    Article  Google Scholar 

  • 4.

    Donovan, S. K. & Pawson, D. L. Proximal growth of the column in bathycrinid crinoids (Echinodermata) following decapitation. Bull. Mar. Sci. 61, 571–579 (1997).

    Google Scholar 

  • 5.

    Wilkie, I. C. Autotomy as a prelude to regeneration in echinoderms. Microsc. Res. Tech. 55, 369–396. https://doi.org/10.1002/jemt.1185 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Baumiller, T. K. Crinoid ecological morphology. Annu. Rev. Earth Planet. Sci. 36, 221–249. https://doi.org/10.1146/annurev.earth.36.031207.124116 (2008).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Wilkie, I. C., Barbaglio, A., Maclaren, W. M. & Candia Carnevali, M. D. Physiological and immunocytochemical evidence that glutamatergic neurotransmission is involved in the activation of arm autotomy in the featherstar Antedon mediterranea (Echinodermata: Crinoidea). J. Exp. Biol. 213, 2104–2115. https://doi.org/10.1242/jeb.039578 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Meyer, D. L. Crinoids as renewable resources: rapid regeneration of the visceral mass in a tropical reef-dwelling crinoid from Australia. In Echinoderm biology (eds Burke, D. R., Mladenov, D. P., Lambert, P. & Parsley, L. R.) 519–522 (Balkema, Rotterdam, 1998).

    Google Scholar 

  • 9.

    Shibata, T. F. & Oji, T. Autotomy and arm number increase in Oxycomanthus japonicus (Echinodermata, Crinoidea). Invertebr. Biol. 122, 375–379. https://doi.org/10.1111/j.1744-7410.2003.tb00101.x (2005).

    Article  Google Scholar 

  • 10.

    Mozzi, D., Dolmatov, I. Y., Bonasoro, F. & Candia Carnevali, M. D. Visceral regeneration in the crinoid Antedon mediterranea: basic mechanisms, tissues and cells involved in gutre growth. Cent. Eur. J. Biol. 1, 609–635 (2006).

    Google Scholar 

  • 11.

    Gahn, F. J. & Baumiller, T. K. Arm regeneration in Mississippian crinoids: evidence of intense predation pressure in the Paleozoic? Paleobiology 31, 151–164. https://doi.org/10.1666/0094-8373(2005)031<0151:ARIMCE>2.0.CO;2 (2005).

    Article  Google Scholar 

  • 12.

    Kitazawa, K. & Oji, T. Particle selection by the sea lily Metacrinus rotundus Carpenter 1884 (Echinodermata, Crinoidea). J. Exp. Mar. Biol. Ecol. 395, 80–84. https://doi.org/10.1016/j.jembe.2010.08.018 (2010).

    Article  Google Scholar 

  • 13.

    Kitazawa, K. & Oji, T. Active feeding behavior of and current modification by the sealily Metacrinus rotundus Carpenter 1884 (Echinodermata: Crinoidea). J. Exp. Mar. Biol. Ecol. 453, 13–21. https://doi.org/10.1016/j.jembe.2013.12.017 (2014).

    Article  Google Scholar 

  • 14.

    Brom, K. R., Oguri, K., Oji, T., Salamon, M. A. & Gorzelak, P. Experimental neoichnology of crawling stalked crinoids. Swiss J. Palaeontol. 137, 197–203. https://doi.org/10.1007/s13358-018-0158-9 (2018).

    Article  Google Scholar 

  • 15.

    Holland, N. D. & Grimmer, J. C. Fine structure of syzygia articulations before and after arm autotomy in Florometra serratissima (Echinodermata: Crinoidea). Zoomorphology 98, 169–183 (1981).

    Article  Google Scholar 

  • 16.

    Oji, T. & Okamoto, T. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology 20, 27–39. https://doi.org/10.1017/S0094837300011118 (1994).

    Article  Google Scholar 

  • 17.

    Saucède, T., Vennin, F., Fara, E., Olivier, N. & The Paris Biota Team. A new holocrinid (Articulata) from the Paris Biota (Bear Lake County, Idaho, USA) highlights the high diversity of Early Triassic crinoids. Geobios 54, 45–53. https://doi.org/10.1016/j.geobios.2019.04.003 (2019).

    Article  Google Scholar 

  • 18.

    Brayard, A. et al. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Sci. Adv. 3, e1602159 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Bassler, U. A movement generated in the peripheral nervous system: rhythmic flexion by autotomized legs of the stick insect Cunicuuna impigra. J. Exp. Biol. 111, 191–199 (1984).

    Google Scholar 

  • 20.

    Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317 (1981).

    ADS  Article  Google Scholar 

  • 21.

    Wilkie, C. Arm autotomy in brittlestars (Echinodermata : Ophiuroidea). J. Zool. Lond. 186, 311–330 (1978).

    Article  Google Scholar 

  • 22.

    Norman, M. D. & Finn, J. Revision of the Octopus horridus species-group, including erection of a new subgenus and description of two member species from the Great Barrier Reef, Australia. Invertebr. Tax. 15, 13–35 (2001).

    Article  Google Scholar 

  • 23.

    Neto de Carvalho, C. et al. Running crabs, walking crinoids, grazing gastropods: behavioral diversity and evolutionary implications of the Cabeço da Ladeira Lagerstätte (Middle Jurassic, Portugal). Comun. Geol. 103, 39–54 (2016).

    Google Scholar 

  • 24.

    Dzik, J. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the ‘Cambrian explosion’. Paleobiology 31, 507–525. https://doi.org/10.1666/0094-8373 (2005).

    Article  Google Scholar 

  • 25.

    Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. Tetrapod trackways from the early Middle Devonian of Poland. Nature 463, 43–48. https://doi.org/10.1038/nature08623 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Plotnick, R. E. Behavioral biology of trace fossils. Paleobiology 38, 459–473. https://doi.org/10.2307/41684612 (2012).

    Article  Google Scholar 

  • 27.

    Gahn, F. J. & Baumiller, T. K. Evolutionary History of regeneration in crinoids (Echinodermata). Integr. Comp. Biol. 50, 514a–514m (2010).

    Article  Google Scholar 

  • 28.

    Veitch, M. A. & Baumiller, T. K. Low predation intensity on the stalked crinoid Democrinus sp. (Echinodermata) in Roatán, Honduras reveals deep water as likely predation refuge. Bull. Mar. Sci. https://doi.org/10.5343/bms.2020.0024 (2020).

    Article  Google Scholar 

  • 29.

    Baumiller, T. K. & Gahn, F. J. Testing predation-driven evolution using Mid-Paleozoic crinoid arm regeneration. Science 305, 1453–1455. https://doi.org/10.1126/science.1101009 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Oji, T. Fossil record of echinoderm regeneration with special regard to crinoids. Microsc. Res. Tech. 55, 397–402. https://doi.org/10.1002/jemt.1186 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Foote, M. Morphological diversification of Paleozoic crinoids. Paleobiology 21, 272–299 (1995).

    Article  Google Scholar 

  • 32.

    Twitchett, R. J. & Oji, T. Early Triassic recovery of echinoderms. C. R. Palevol 4, 531–542. https://doi.org/10.1016/j.crpv.2005.02.006 (2005).

    Article  Google Scholar 

  • 33.

    Simms, M. J. Systematics, phylogeny and evolutionary history. In Fossil crinoids (eds Hess, H., Ausich, W. I., Brett, E. C. & Simms, J. M.) 31–40 (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  • 34.

    Simms, M. J. & Sevastopulo, G. D. The origin of articulate crinoids. Palaeontology 36, 91–109 (1993).

    Google Scholar 

  • 35.

    Baumiller, T. K. & Messing, C. G. Stalked crinoid locomotion and its ecological and evolutionary implications. Palaeontol. Electron. 10, 2A (2007).

    Google Scholar 

  • 36.

    Baumiller, T. K., Mooi, R. & Messing, C. G. Urchins in a meadow: paleobiologial and evolutionaryimplications of cidaroidpredation on crinoids. Paleobiology 34, 22–34. https://doi.org/10.1666/07031.1 (2008).

    Article  Google Scholar 

  • 37.

    Baumiller, T. K. et al. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc. Natl Acad. Sci. USA 107, 5893–5896. https://doi.org/10.1073/pnas.0914199107 (2010).

    ADS  Article  PubMed  Google Scholar 

  • 38.

    Hagdorn, H. Triassic: the crucial period of post Palaeozoic crinoid diversification. Swiss J. Palaeontol. 130, 91–112. https://doi.org/10.1007/s13358-010-0009-9 (2011).

    Article  Google Scholar 

  • 39.

    Salamon, M. A., Niedźwiedzki, R., Gorzelak, P., Lach, R. & Surmik, D. Bromalites from the Middle Triassic of Poland and the rise of the Mesozoic marine revolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 321–322, 142–150. https://doi.org/10.1016/j.palaeo.2012.01.029 (2012).

    Article  Google Scholar 

  • 40.

    Salamon, M. A., Gorzelak, P., Hanken, N. M., Riise, H. E. & Ferré, B. Crinoids from Svalbard in the aftermath of the end−Permian mass extinction. Pol. Polar Res. 36, 225–238. https://doi.org/10.1515/popore−2015−0015 (2015).

    Article  Google Scholar 

  • 41.

    Baumiller, T. K. & Hagdorn, H. Taphonomy as a guide to functional morphology of Holocrinus, the first post-Paleozoic crinoid. Lethaia 28, 221–228. https://doi.org/10.1111/j.1502-3931.1995.tb01425.x (1995).

    Article  Google Scholar 

  • 42.

    Gorzelak, P. Microstructural evidence for stalk autotomy in Holocrinus—the oldest stem-group isocrinid. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 202–207. https://doi.org/10.1016/j.palaeo.2016.12.012 (2018).

    Article  Google Scholar 

  • 43.

    Gorzelak, P. & Salamon, M. A. Holocrinus—The oldest stem-group isocrinid with stalk shedding and crawling abilities: evidence from taphonomy, microstructure and trace fossils. In 11th North American Paleontological Conference Program with Abstracts (eds Droser, M., Hughes, N., Bonuso, N., Bottjer, D., Eernisse, D., Gaines, R., Hendy, A., et al.) 153–154 (2019).

  • 44.

    Rasmussen, H. W. Articulata (eds Moore, C. R. & Teichert, C.) T813–T928 (Boulder and Lawrence, 1978).

  • 45.

    Vitt, L. J., Congdom, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in lizards. Ecology 58, 326–337 (1977).

    Article  Google Scholar 

  • 46.

    Daniels, C. B., Flaherty, S. P. & Simbotwe, M. P. Tail size and effectiveness of autotomy in a lizard. J. Herpetol. 20, 93–96 (1986).

    Article  Google Scholar 

  • 47.

    Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: Function and energetics of postautotomy tail movement in Scincella lateralis. Science 219, 391–393 (1983).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Medel, R. G., Jiminez, J. E., Fox, S. F. & Jaksic, F. M. Experimental evidence that high-population frequencies of lizard tail autotomy indicates inefficient predation. Oikos 53, 321–324 (1988).

    Article  Google Scholar 

  • 49.

    Pafilis, P., Foufopoulos, J., Poulakakis, N., Lymberakis, P. & Valakos, E. D. Tail shedding in island lizards [Lacertidae, Reptilia]: decline of antipredator defenses in relaxed predation environments. Evolution 63, 1262–1278 (2009).

    Article  Google Scholar 

  • 50.

    Pianka, E. R. Notes on the biology of Varanus caudolineatus and Varanus gilleni. West. Aust. Nat. 11, 76–82 (1969).

    Google Scholar 

  • 51.

    Arnold, E. N. Caudal autotomy as a defense. In Biology of the Reptilia Vol. 16 (eds Gans, C. & Huey, R. B.) 236–273 (Alan Liss, New York, 1988).

    Google Scholar 

  • 52.

    Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early Triassic marine biotic recovery: the predators perspective. PLoS ONE 9, e88987. https://doi.org/10.1371/journal.pone.0088987 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Brachaniec, T. et al. Coprolites of marine vertebrate predators from the Lower Triassic of southern Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 118–126. https://doi.org/10.1016/j.palaeo.2015.06.005 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Effectiveness of protected areas in conserving tropical forest birds

    Did our early ancestors boil their food in hot springs?