in

First fossil frog from Antarctica: implications for Eocene high latitude climate conditions and Gondwanan cosmopolitanism of Australobatrachia

  • 1.

    Pekar, S. F., Hucks, A., Fuller, M. & Li, S. Glacioeustatic changes in the early and middle Eocene (51–42 Ma): Shallow-water stratigraphy from ODP Leg 189 Site 1171 (South Tasman Rise) and deep-sea δ18O records. Geol. Soc. Am. Bull. 117, 1081–1093 (2005).

  • 2.

    Miller, K. G., Wright, J. D. & Browning, J. V. Visions of ice sheets in a greenhouse world. Mar. Geol. 217, 215–231 (2005).

  • 3.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

  • 4.

    Woodburne, M. O. & Zinsmeister, W. J. Fossil land mammal from Antarctica. Science 218, 284–286 (1982).

  • 5.

    Woodburne, M. O. & Case, J. A. Dispersal, vicariance, and the Late Cretaceous to Early Tertiary land mammal biogeography from South America to Australia. J. Mamm. Evol. 3, 121–161 (1996).

    • Article
    • Google Scholar
  • 6.

    Gelfo, J. N., Mörs, T., Lorente, M., López, G. M. & Reguero, M. The oldest mammals from Antarctica, early Eocene of the La Meseta Formation, Seymour Island. Palaeontology 58, 101–110 (2015).

    • Article
    • Google Scholar
  • 7.

    Kriwet, J., Engelbrecht, A., Mörs, T., Reguero, M. & Pfaff, C. Ultimate Eocene (Priabonian) Chondrichthyans (Holocephali, Elasmobranchii) of Antarctica. J. Vertebr. Paleontol. 36, e1160911 (2016).

  • 8.

    Schwarzhans, W., Mörs, T., Engelbrecht, A., Reguero, M. & Kriwet, J. Before the freeze: Otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei). J. Syst. Palaeontol. 15, 147–170 (2017).

  • 9.

    Agnolin, F. A new Calyptocephalellidae (Anura, Neobatrachia) from the Upper Cretaceous of Patagonia, Argentina, with comments on its systematic position. Stud. Geol. Salamanticensia 48, 129–178 (2012).

    • Google Scholar
  • 10.

    Muzzopappa, P. & Báez, A. M. Systematic status of the mid-Tertiary neobatrachian frog Calyptocephalella canqueli from Patagonia (Argentina), with comments on the evolution of the genus. Ameghiniana 46, 113–125 (2009).

    • Google Scholar
  • 11.

    Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T. & Marenssi, S. Late Cretaceous/Paleogene West Antarctica Terrestrial Biota and its Intercontinental Affinities 55–110 (Springer, 2013).

  • 12.

    Friis, E. M., Iglesias, A., Reguero, M. A. & Mörs, T. Notonuphar antarctica, an extinct water lily (Nymphaeales) from the Eocene of Antarctica. Plant Syst. Evol. 181, 969–980 (2017).

    • Article
    • Google Scholar
  • 13.

    McLoughlin, S., Bomfleur, B., Mörs, T. & Reguero, M. Fossil clitellate annelid cocoons and their microbiological inclusions from the Eocene of Seymour Island, Antarctica. Palaeontol. Electron. 19, 1–27 (2016).

    • Google Scholar
  • 14.

    Goin, F. J., Case, J. A., Woodburne, M. O., Vizcaíno, S. F. & Reguero, M. A. New Discoveries of “Opposum-Like” Marsupials from Antarctica (Seymour Island, Medial Eocene). J. Mamm. Evol. 6, 335–365 (1999).

    • Article
    • Google Scholar
  • 15.

    Bond, M., Reguero, M.A., Vizcaíno, S.F. & Marenssi, S. Cretaceous-Tertiary high-latitude palaeoenvironments: James Ross Basin, Antarctica, (ed. Francis, J. E., Pirrie, D. & Crame, J. A.) 163–176 (Geological Society, 2006).

  • 16.

    Chornogubsky, L., Goin, F. J. & Reguero, M. A reassessment of Antarctic polydolopid marsupials (Middle Eocene, La Meseta Formation). Antarct. Sci. 21, 285–297 (2009).

  • 17.

    Bomfleur, B., Mörs, T., Ferraguti, M., Reguero, M. A. & McLoughlin, S. Fossilized spermatozoa preserved in a 50-Myr-old annelid cocoon from Antarctica. Biol. Letters 11, 20150431, https://doi.org/10.1098/rsbl.2015.0431 (2015).

  • 18.

    Engelbrecht, A., Mörs, T., Reguero, M. A. & Kriwet, J. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica. J. S. Am. Earth Sci. 78, 175–189 (2017).

    • Article
    • Google Scholar
  • 19.

    Engelbrecht, A., Mörs, T., Reguero, M. A. & Kriwet, J. New carcharhiniform sharks (Chondrichthyes, Elasmobranchii) from the early to middle Eocene of Seymour Island, Antarctic Peninsula. J. Vertebr. Paleontol. 10, e1371724 (2017).

    • Article
    • Google Scholar
  • 20.

    Engelbrecht, A., Mörs, T., Reguero, M. A. & Kriwet, J. Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula. J. Syst. Palaeontol. 15, 969–990 (2017).

  • 21.

    Engelbrecht, A., Mörs, T., Reguero, M. A. & Kriwet, J. Skates and rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta formations, Seymour Island, Antarctica. Hist. Biol. 10, 1–17 (2018).

    • Google Scholar
  • 22.

    Marramà, G., Engelbrecht, A., Mörs, T., Reguero, M. A. & Kriwet, J. The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks. Riv. Ital. Paleontol. S. 124, 283–298 (2018).

    • Google Scholar
  • 23.

    Douglas, P. M. J. et al. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. P. Natl Acad. Sci. USA 111, 6582–6587 (2014).

  • 24.

    Amenábar, C. R., Montes, M., Nozal, F. & Santillana, S. Dinoflagellate cysts of the La Meseta Formation (middle to late Eocene), Antarctic Peninsula: implications for biostratigraphy, palaeoceanography and palaeoenvironment. Geological Magazine, 1–16, https://doi.org/10.1017/S0016756819000591 (2019).

  • 25.

    Fischer, G. Zoognosia. Tabulis Synopticis Illustrata, in Usum Prælectionum Academiæ Imperialis Medico-Chirurgicæ Mosquensis Edita 1-465 (Typis Nicolai Sergeidis Vsevolozsky, 1813).

  • 26.

    Reig, O. A. Proposiciones para una nueva macrosistemática de los anuros (nota preliminar). Physis 21, 231–297 (1958).

    • Google Scholar
  • 27.

    Frost, D. R. et al. The amphibian tree of life. B. Am. Mus. Nat. Hist. 297, 1–370 (2006).

    • Article
    • Google Scholar
  • 28.

    Reig, O. A. Las relaciones genéricas del anuro chileno Calyptocephalella gayi (Dum. and Bibr.). Actas y Trabajos I. Congreso Sudamericano Zoología, La Plata 1, 271–278 (1960).

    • Google Scholar
  • 29.

    Strand, E. Miscellanea nomenclatorica zoologica et paleontologica I-II. Arch. Naturgesch. 92, 30–75 (1928).

    • Google Scholar
  • 30.

    Gardner, J. D. et al. Comparative morphology of the ilium of anurans and urodeles (Lissamphibia) and a re-assessment of the anuran affinities of Nezpercius dodsoni Blob et al., 2001. J. Vertebr. Paleontol. 30, 1684–1696 (2010).

  • 31.

    Bailon, S. Différenciation ostéologique des Anoures (Amphibia, Anura) de France 1–41 (Centre de Recherches Archéologiques du CNRS, 1999).

  • 32.

    Rage, J.-C. Frogs (Amphibia, Anura) from the Eocene and Oligocene of the phosphorites du Quercy (France). An overview. Foss. Imprint 72, 53–66 (2016).

    • Article
    • Google Scholar
  • 33.

    Folie, A. et al. Early Eocene frogs from Vastan Lignite Mine, Gujarat, India. Acta Palaeontol. Pol. 58, 511–524 (2013).

    • Google Scholar
  • 34.

    Clarac, F., Buffrénil, V., de, Brochu, C. & Cubo, J. The evolution of bone ornamentation in Pseudosuchia: morphological constraints versus ecological adaptation. Biol. J. Linn. Soc. 121, 395–408 (2017).

    • Article
    • Google Scholar
  • 35.

    Scheyer, T. M., Sander, P. M., Joyce, W. G., Böhme, W. & Witzel, U. A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications. Org. Divers. Evol. 7, 136–144 (2007).

    • Article
    • Google Scholar
  • 36.

    Gardner, J. D., Evans, S. E. & Sigogneau-Russell, D. New albanerpetontid amphibians from the Early Cretaceous of Morocco and Middle Jurassic of England. Acta Palaeontol. Pol. 48, 301–319 (2003).

    • Google Scholar
  • 37.

    Gardner, J. D. Albanerpetontid amphibians from the Upper Cretaceous (Campanian and Maastrichtian) of North America. Geodiversitas 22, 349–388 (2000).

    • Google Scholar
  • 38.

    Gardner, J. D. & Rage, J.-C. The fossil record of lissamphibians from Africa, Madagascar, and the Arabian Plate. Palaeobio. Palaeoenv. 96, 169–220 (2016).

    • Article
    • Google Scholar
  • 39.

    Estes, R. Gymnophiona, Caudata 1–115 (Gustav Fischer, 1981).

  • 40.

    Schoch, R., Poschmann, M. & Kupfer, A. The salamandrid Chelotriton paradoxus from Enspel and Randeck Maars (Oligocene–Miocene, Germany). Palaeobio. Palaeoenv. 95, 77–86 (2015).

    • Article
    • Google Scholar
  • 41.

    Vickaryous, M. K. & Hall, B. K. Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J. Morphol. 269, 398–422 (2008).

  • 42.

    Alibardi, L. & Thompson, M. B. Scale morphogenesis and ultrastructure of dermis during embryonic development in the alligator (Alligator mississippiensis, Crocodilia, Reptilia). Acta Zool. 81, 325–338 (2000).

    • Article
    • Google Scholar
  • 43.

    Buffrénil, Vde Morphogenesis of bone ornamentation in extant and extinct crocodilians. Zoomorphology 99, 155–166 (1982).

    • Article
    • Google Scholar
  • 44.

    Estes, R. Sauria terrestria, Amphisbaenia 1–249 (Gustav Fischer, 1983).

  • 45.

    Čerňanský, A. & Augé, M. L. New species of the genus Plesiolacerta (Squamata: Lacertidae) from the upper Oligocene (MP28) of Southern Germany and a revision of the type species Plesiolacerta lydekkeri. Palaeontology 56, 79–94 (2013).

    • Article
    • Google Scholar
  • 46.

    Cicimurri, D. J., Knight, J. L., Self-Trail, J. M. & Ebersole, S. M. Late Paleocene glyptosaur (Reptilia: Anguidae) osteoderms from South Carolina, USA. J. Paleontol. 90, 147–153 (2016).

    • Article
    • Google Scholar
  • 47.

    Vasilyan, D. Eocene Western European endemic genus Thaumastosaurus: New insights into the question “Are the Ranidae known prior to the Oligocene?”. PeerJ 6, https://doi.org/10.7717/peerj.5511 (2018).

  • 48.

    Gómez, R. O., Báez, A. M. & Muzzopappa, P. A new helmeted frog (Anura: Calyptocephalellidae) from an Eocene subtropical lake in northwestern Patagonia, Argentina. J. Vertebr. Paleontol. 31, 50–59 (2011).

    • Article
    • Google Scholar
  • 49.

    Báez, A. M. & Gómez, R. O. Dealing with homoplasy: osteology and phylogenetic relationships of the bizarre neobatrachian frog Baurubatrachus pricei from the Upper Cretaceous of Brazil. J. Syst. Palaeontol. 16, 279–308 (2018).

    • Article
    • Google Scholar
  • 50.

    Evans, S. E., Groenke, J. R., Jones, M. E. H., Turner, A. H. & Krause, D. W. New material of Beelzebufo, a hyperossified frog (Amphibia: Anura) from the Late Cretaceous of Madagascar. Plos One 9, e87236, https://doi.org/10.1371/journal.pone.0087236 (2014).

  • 51.

    Schaeffer, B. Anurans from the early Tertiary of Patagonia. B. Am. Mus. Nat. Hist. 93, 41–68 (1949).

    • Google Scholar
  • 52.

    Báez, A.M. The Late Cretaceous Fauna of Los Alamitos, Patagonia, Argentina (ed. Bonaparte J. F.) 121–130 (Museo Argentino de Sciencias Naturales Bernadino Rivadavia, 1987).

  • 53.

    Otero, R. A., Jimenez-Huidobro, P., Soto-Acuña, S. & Yury-Yáñez, R. E. Evidence of a giant helmeted frog (Australobatrachia, Calyptocephalellidae) from Eocene levels of the Magallanes Basin, southernmost Chile. J. S. Am. Earth Sci. 55, 133–140 (2014).

    • Article
    • Google Scholar
  • 54.

    Vitt, L. J. & Caldwell, J. P. Herpetology. An introductory biology of amphibians and reptiles 1–776 (Elsevier Academic Press, Amsterdam, 2013).

  • 55.

    Veloso, A., Formas, R.J. & Gerson, H. Calyptocephalella gayi. The IUCN Red List of Threatened Species (2010).

  • 56.

    Cei, J. M. Batracios de Chile 1–128 (Universidad de Chile, Santiago, 1962).

  • 57.

    Nicoli, L., Muzzopappa, P. & Faivovich, J. The taxonomic placement of the Miocene Patagonian frog Wawelia gerholdi (Amphibia: Anura). Alcheringa 40, 153–160, https://doi.org/10.1080/03115518.2016.1101998 (2016).

    • Article
    • Google Scholar
  • 58.

    Tyler, M. J. & Godthelp, H. A new species of Lechriodus Boulenger (Anura: Leptodactylidae) from the Early Eocene of Queensland. T. Roy. Soc. South Aust. 117, 187–189 (1993).

    • Google Scholar
  • 59.

    Feng, Y.-J. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. P. Natl Acad. Sci. USA 114, E5864–E5870 (2017).

  • 60.

    Vizcaíno, S.F., Kay, R.F. & Bargo, M.S. (eds.). Early Miocene paleobiology in Patagonia: High-latitude paleocommunities of the Santa Cruz Formation 1–378 (Cambridge Univ. Press, 2012).

  • 61.

    Francis, J.E. et al. Antarctica: A keystone in a changing world; proceedings of the 10 thInternational Symposium on Antarctic Earth Sciences, Santa Barbara, California (ed. Cooper, A. K. & Barrett, P.) 19–27 (National Academies Press, 2008).

  • 62.

    Nowak, R.M. & Dickman, C.R. Walker’s marsupials of the world 1–226 (Johns Hopkins University Press, 2005).

  • 63.

    Nilsson, M. A. et al. Tracking marsupial evolution using archaic genomic retroposon insertions. Plos biology 8, e1000436, https://doi.org/10.1371/journal.pbio.1000436 (2010).

  • 64.

    Goin, F. et al. New marsupial (Mammalia) from the Eocene of Antarctica, and the origins and affinities of the Microbiotheria. Rev. Asoc. Paleontol. Argentina 64, 597–603 (2007).

    • Google Scholar
  • 65.

    Unknown. Morphosource. Available at, https://www.morphosource.org/ (2020).

  • 66.

    Gómez, R. O. & Turazzini, G. F. An overview of the ilium of anurans (Lissamphibia, Salientia), with a critical appraisal of the terminology and primary homology of main ilial features. J. Vertebr. Paleontol. 36, e1030023 (2016).

    • Article
    • Google Scholar
  • 67.

    The world bank groups. Climate Change Knowledge Portal (2017).


  • Source: Ecology - nature.com

    Maria Zuber on climate change: “Breakthroughs will happen”

    Researchers explore ocean microbes’ role in climate effects