in

From antagonism to synergism: Extreme differences in stressor interactions in one species

  • 1.

    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: Its extent and extinction. Science 278, 689–692 (1997).

  • 2.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

  • 3.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

  • 4.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, E6089–E6096 (2017).

  • 5.

    Régnier, C. et al. Mass extinction in poorly known taxa. Proc. Natl. Acad. Sci. 112, 7761–7766 (2015).

  • 6.

    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–13 (2007).

    • Article
    • Google Scholar
  • 7.

    Garibaldi, La et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–11 (2013).

  • 8.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

  • 9.

    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).

  • 10.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with drivers at landscape level. Nature 574, 1–34. (2019).

  • 11.

    Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Chang. Biol. 12, 1545–1553 (2006).

    • Article
    • Google Scholar
  • 12.

    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

  • 13.

    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540(7632), 266 (2016).

  • 14.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–53 (2010).

    • Article
    • Google Scholar
  • 15.

    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

    • Article
    • Google Scholar
  • 16.

    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108, 662–667 (2011).

  • 17.

    Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016).

  • 18.

    Miyo, T., Akai, S. & Oguma, Y. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. Empirical observations of fitness costs of insecticide resistance. Genes Genet. Syst. 75, 97–104 (2000).

  • 19.

    Baron, G. L., Raine, N. E. & Brown, M. J. F. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc. R. Soc. B Biol. Sci. 284, 20170123 (2017).

  • 20.

    Ranjeva, S. et al. Age-specific differences in the dynamics of protective immunity to influenza. Nat. Commun. 10, 1–11 (2019).

  • 21.

    Fransen, J. J., Winkelman, K. & van Lenteren, J. C. The differential mortality at various life stages of the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae), by infection with the fungus Aschersonia aleyrodis (Deuteromycotina: Coelomycetes). J. Invertebr. Pathol. 50, 158–165 (1987).

    • Article
    • Google Scholar
  • 22.

    Sheridan, L. A. D., Poulin, R., Ward, D. F. & Zuk, M. Sex differences in parasitic infections among arthropod hosts: Is there a male bias? Oikos 88, 327–334 (2000).

    • Article
    • Google Scholar
  • 23.

    Úbeda, F. & Jansen, V. A. A. The evolution of sex-specific virulence in infectious diseases. Nat. Commun. 7, 1–9 (2016).

  • 24.

    Semlitsch, R. D., Bridges, C. M. & Welch, A. M. Genetic variation and a fitness tradeoff in the tolerance of gray treefrog (Hyla versicolor) tadpoles to the insecticide carbaryl. Oecologia 125, 179–185 (2000).

  • 25.

    Evans, J. D., Shearman, D. C. A. & Oldroyd, B. P. Molecular basis of sex determination in haplodiploids. Trends Ecol. Evol. 19, 1–3 (2004).

    • Article
    • Google Scholar
  • 26.

    O’Donnell, S. & Beshers, S. N. The role of male disease susceptibility in the evolution of haplodiploid insect societies. Proc. Biol. Sci. 271, 979–83 (2004).

  • 27.

    Wilson, E.O. The Insect Societies. Harvard University Belknap Press, Cambridge, MA (1971).

  • 28.

    Schmid-Hempel, P. Parasites in social insects. Princeton University Press, Princeton, New Jersey (1998).

  • 29.

    Rosengaus, R. B. & Traniello, J. F. A. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 50, 546–556 (2001).

    • Article
    • Google Scholar
  • 30.

    Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7, e37235 (2012).

  • 31.

    EFSA. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 268 (2014).

    • Google Scholar
  • 32.

    Beye, M., Hasselmann, M., Fondrik, M. K., Page, R. E. Jr. & Omholt, S. W. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114, 419–429 (2003).

  • 33.

    Antúnez, K. et al. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11, 2284–90 (2009).

  • 34.

    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. 6, 1–4 (2010).

    • Article
    • Google Scholar
  • 35.

    Hornitzky, M. Nosema Disease – Literature review and three year survey of beekeepers – Part 2. RIRDC Publ., 35 (2008).

  • 36.

    Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294 (2010).

    • Article
    • Google Scholar
  • 37.

    Tritschler, M. et al. Protein nutrition governs within-host race of honey bee pathogens. Sci. Rep., 1–11 (2017).

  • 38.

    Adam, R., Adriana, M. & Ewa, P. An influence of chosen feed additives on the life-span of laboratory held drones and the possibility of semen collection. J. Apic. Sci. 54, 25–36 (2010).

    • Google Scholar
  • 39.

    Retschnig, G. et al. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera). PLoS One 9, e85261 (2014b).

  • 40.

    Jack, C. J., Uppala, S. S., Lucas, H. M. & Sagili, R. R. Effects of pollen dilution on infection of Nosema ceranae in honey bees. J. Insect Physiol. 87, 12–19 (2016).

  • 41.

    Aufauvre, J. et al. Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Sci. Rep. 2, 326 (2012).

  • 42.

    Mayack, C. & Naug, D. Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J. Invertebr. Pathol. 100, 185–8 (2009).

    • Article
    • Google Scholar
  • 43.

    Naug, D. & Gibbs, A. Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40, 595–599 (2009).

    • Article
    • Google Scholar
  • 44.

    Basualdo, M., Barragán, S. & Antúnez, K. Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees. Environ. Microbiol. Rep. 6, 396–400 (2014).

  • 45.

    Crailsheim, K. et al. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. J. Insect Physiol. 38, 409–419 (1992).

    • Article
    • Google Scholar
  • 46.

    Heinrich, B. Thermoregulation in endothermic insects. Science. 185(4153), 747–756 (1974).

  • 47.

    Zheng, H.-Q. et al. Spore loads may not be used alone as a direct indicator of the severity of Nosema ceranae infection in honey bees Apis mellifera (Hymenoptera:Apidae). J. Econ. Entomol. 107, 2037–2044 (2014).

    • Article
    • Google Scholar
  • 48.

    Hrassnigg, N. & Crailsheim, K. Differences in drone and worker physiology in honeybees (Apis mellifera) 1. Apidologie 36, 255–277 (2005).

    • Article
    • Google Scholar
  • 49.

    Szolderits, M. J. & Crailsheim, K. A comparison of pollen consumption and digestion in honeybee (Apis mellifera carnica) drones and workers. J. Insect Physiol. 39, 877–881 (1993).

    • Article
    • Google Scholar
  • 50.

    Eyer, M., Dainat, B., Neumann, P. & Dietemann, V. Social regulation of ageing by young workers in the honey bee, Apis mellifera. Exp. Gerontol. 87, 84–91 (2017).

    • Article
    • Google Scholar
  • 51.

    Ruiz-González, M. X. & Brown, M. J. F. Males vs workers: Testing the assumptions of the haploid susceptibility hypothesis in bumblebees. Behav. Ecol. Sociobiol. 60, 501–509 (2006).

    • Article
    • Google Scholar
  • 52.

    Cappa, F., Beani, L., Cervo, R., Grozinger, C. & Manfredini, F. Testing male immunocompetence in two hymenopterans with different levels of social organization: “live hard, die young? Biol. J. Linn. Soc. 114, 274–278 (2015).

    • Article
    • Google Scholar
  • 53.

    Miller, C. V. & Cotter, S. C. Pathogen and immune dynamics during maturation are explained by Bateman’s Principle. Ecological entomology 42, 28–38 (2017).

    • Article
    • Google Scholar
  • 54.

    Free, J. B. The food of adult drone honeybees (Apis mellifera). Br. J. Anim. Behav. 5, 7–11 (1957).

    • Article
    • Google Scholar
  • 55.

    Kraus, F. B., Neumann, P., Scharpenberg, H., Van Praagh, J. & Moritz, R. F. A. Male fitness of honeybee colonies (Apis mellifera L.). J. Evol. Biol. 16, 914–920 (2003).

  • 56.

    Straub, L., Williams, G. R. G. R., Pettis, J., Fries, I. & Neumann, P. Superorganism resilience: Eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12, 109–112 (2015).

    • Article
    • Google Scholar
  • 57.

    Seeley, T. D. Life history strategy of the honey bee, Apis mellifera. Oecologia 32(1), 109–118 (1978).

  • 58.

    Wilson-Rich, N., Dres, S. T. & Starks, P. T. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of insect physiology 54(10-11), 1392–1399 (2008).

  • 59.

    Doums, C., Moret, Y., Benelli, E. & Schmid‐Hempel, P. Senescence of immune defence in Bombus workers. Ecological Entomology 27(2), 138–144 (2002).

    • Article
    • Google Scholar
  • 60.

    Steinmann, N., Corona, M., Neumann, P. & Dainat, B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PloS one 10(6), e0129956 (2015).

  • 61.

    Friedli, A., Williams, G. R., Bruckner, S., Neumann, P. & Straub, L. The weakest link: Haploid honey bees are more susceptible to neonicotinoid insecticides. Chemosphere 242, 125145 (2019).

  • 62.

    Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, 96–119 (2010).

    • Article
    • Google Scholar
  • 63.

    Williams, G. R. et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 52, 1–36 (2013).

    • Article
    • Google Scholar
  • 64.

    Currie, R. W. The biology and behaviour of drones. Bee World 68, 129–143 (1987).

    • Article
    • Google Scholar
  • 65.

    Williams, G. R. et al. Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada and the first description of an overtly-infected emerging queen. J. Invertebr. Pathol. 101, 77–9 (2009).

    • Article
    • Google Scholar
  • 66.

    Dainat, B. & Neumann, P. Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses. J. Invertebr. Pathol. 112, 278–80 (2013).

    • Article
    • Google Scholar
  • 67.

    Dietemann, V. et al. Standard methods for Varroa research. J. Apic. Res. 52, 1–54 (2013).

    • Google Scholar
  • 68.

    Straub, L. et al. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. R. Soc. Proc. B 283, 20160506 (2016).

    • Article
    • Google Scholar
  • 69.

    Chen, Y., Evans, J. D., Smith, I. B. & Pettis, J. S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 97, 186–188 (2008).

    • Article
    • Google Scholar
  • 70.

    Fries, I. et al. Standard methods for Nosema research. J. Apic. Res. 52, 1–28 (2013).

  • 71.

    Cantwell, G. E. Standard methods for counting Nosema spores. Am. Bee J. 110, 222–223 (1970).

  • 72.

    Retschnig, G., Neumann, P. & Williams, G. R. Thiacloprid-Nosema ceranae interactions in honey bees: host survivorship but not parasite reproduction is dependent on pesticide dose. J. Invertebr. Pathol. 118, 18–9 (2014a).

    • Article
    • Google Scholar
  • 73.

    Tosi, S. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Sci. Rep. 7, 1–13 (2017).

  • 74.

    Paxton, R. J., Klee, J., Korpela, S. & Fries, I. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38, 558–565 (2007).

    • Article
    • Google Scholar
  • 75.

    NCSS 2019 Statistical Software. NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss (2019).

  • 76.

    Pirk, C. W. W. et al. Statistical guidelines for Apis mellifera research. J. Apic. Res. 52, 1–24 (2013).

    • Article
    • Google Scholar
  • 77.

    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limmol. Ocean. 44, 864–877 (1999).

    • Google Scholar
  • 78.

    Straub, L. et al. Neonicotinoids and ectoparasitic mites synergistically impact honeybees. Sci. Rep. 9, 8159 (2019).

  • 79.

    Hay, M. E. Defensive synergisms? Reply to Pennings. Ecology 77, 1950–1952 (1996).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil

    It does not always take two to tango: “Syntrophy” via hydrogen cycling in one bacterial cell