in

Genetic analyses reveal temporal stability and connectivity pattern in blue and red shrimp Aristeus antennatus populations

  • 1.

    Fernández, M. V., Heras, S., Maltagliati, F., Turco, A. & Roldán, M. I. Genetic structure in the blue and red shrimp Aristeus antennatus and the role played by hydrographical and oceanographical barriers. Mar. Ecol. Prog. Ser. 421, 163–171 (2011).

    ADS  Article  Google Scholar 

  • 2.

    Campillo, A. Bio-ecology of Aristeus antennatus in the French Mediterranean. in Proceedings of the International Workshop on Life Cycles and Fisheries of the Deep-water Red Shrimps Aristaeomorpha foliacea and Aristeus antennatus (ed. Bianchini, M. L. & Ragonese, S.) 25–26 (I.T.P.P. Spec. Publ., Mazara del Vallo, Italy, 1994).

    Google Scholar 

  • 3.

    Sardà, F. et al. An introduction to Mediterranean deep-sea biology. Sci. Mar. 68, 7–38 (2004).

    Article  Google Scholar 

  • 4.

    Sardà, F., Company, J. B. & Castellón, A. Intraspecific aggregation structure of a shoal of a Western Mediterranean (Catalan coast) deep-sea shrimp, Aristeus antennatus (Risso, 1816), during the reproductive period. J. Shellfish Res. 22, 569–579 (2003).

    Google Scholar 

  • 5.

    García-Rodriguez, M. & Esteban, A. On the biology and fishery of Aristeus antennatus (Risso, 1816), (Decapoda, Dendrobranchiata) in the Ibiza Channel (Balearic Islands, Spain). Sci. Mar. 63, 27–37 (1999).

    Article  Google Scholar 

  • 6.

    Carreton, M. et al. Morphological identification and molecular confirmation of the deep-sea blue and red shrimp Aristeus antennatus larvae. PeerJ 7, e6063 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Carbonell, A., Carbonell, M., Demestre, M., Grau, A. & Monserrat, S. The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology in the Balearic Islands, Western Mediterranean. Fish. Res. 44, 1–13 (1999).

    Article  Google Scholar 

  • 8.

    Maynou, F. Environmental causes of the fluctuations of red shrimp (Aristeus antennatus) landings in the Catalan Sea. J. Mar. Syst. 71, 294–302 (2008).

    Article  Google Scholar 

  • 9.

    Massutí, E. et al. The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean; hypothesis for hake and red shrimp off Balearic Islands. J. Mar. Syst. 71, 421–438 (2008).

    Article  Google Scholar 

  • 10.

    Food and Agriculture Organization. General Fisheries Commission for the Mediterranean; Report of the ninth session of the Scientific Advisory Committee. FAO Fish. Rep. 814, 1–106 (2006).

  • 11.

    Boletín Oficial del Estado. Orden AAA/2808/2012, de 21 de diciembre, por la que se establece un Plan de Gestión Integral para la conservación de los recursos pesqueros en el Mediterráneo afectados por las pesquerías realizadas con redes de cerco, redes de arrastre y artes fijos y menores, para el período 2013–2017. BOE 313, 89468–89475 (2012).

    Google Scholar 

  • 12.

    Boletín Oficial del Estado. Orden AAA/923/2013, de 16 de mayo, por la que se regula la pesca de gamba rosada (Aristeus antennatus) con arte de arrastre de fondo en determinadas zonas marítimas próximas a Palamós. BOE 126, 40016–40022 (2013).

    Google Scholar 

  • 13.

    Boletín Oficial del Estado. Orden APM/532/2018, de 25 de mayo, por la que se regula la pesca de gamba rosada (Aristeus antennatus) con arte de arrastre de fondo en determinadas zonas marítimas próximas a Palamós. BOE 128, 55045–55051 (2018).

    Google Scholar 

  • 14.

    Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: how can we do it better?. Fish. Fish. 9, 423–449 (2008).

    Article  Google Scholar 

  • 15.

    Sardà, F., Bas, C., Roldán, M. I., Pla, C. & Lleonart, J. Enzymatic and morphometric analyses in mediterranean populations of the rose shrimp, Aristeus antennatus (Risso, 1816). J. Exp. Mar. Biol. Ecol. 221, 131–144 (1998).

    Article  Google Scholar 

  • 16.

    Roldán, M. I., Heras, S., Patellani, R. & Maltagliati, F. Analysis of genetic structure of the red shrimp Aristeus antennatus from the Western Mediterranean employing two mitochondrial regions. Genetica 136, 1–4 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 17.

    Lo Brutto, S., Maggio, T., Delana, A. M., Cannas, R. & Arculeo, M. Further investigations on populations of the Deep-water blue and red shrimp Aristeus antennatus (Risso, 1816) (Decapoda, Dendrobranchiata), as inferred from amplified fragment length polymorphism (AFLP) and mtDNA analyses. Crustaceana 85, 1393–1408 (2012).

    Article  Google Scholar 

  • 18.

    Wright, J. M. & Bentzen, P. Microsatellites: genetic markers for the future. Rev. Fish. Biol. Fish. 4, 384–388 (1994).

    Article  Google Scholar 

  • 19.

    Cannas, R. et al. Genetic variability of the blue and red shrimp Aristeus antennatus in the Western Mediterranean Sea inferred by DNA microsatellite loci. Mar. Ecol. 33, 350–363 (2012).

    ADS  Article  Google Scholar 

  • 20.

    You, E.-M. et al. Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo-Pacific region. Anim. Genet. 39, 267–277 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Robainas-Barcia, A. et al. Spatiotemporal genetic differentiation of Cuban natural populations of the pink shrimp Farfantepenaeus notialis. Genetica 133, 283–294 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish. Fish. 9, 333–362 (2008).

    Article  Google Scholar 

  • 23.

    Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Vera, M. et al. Current genetic status, temporal stability and structure of the remnant wild European flat oyster populations: conservation and restoring implications. Mar. Biol. 163, 239 (2016).

    Article  Google Scholar 

  • 25.

    García-Ladona, E. Currents in the Western Mediterranean basin. In Atlas of Bedforms in the Western Mediterranean (eds Guillén, J. et al.) 41–47 (Springer, Cham, 2017).

    Google Scholar 

  • 26.

    Fernández, V., Dietrich, D. E., Haney, R. L. & Tintoré, J. Mesoscale, seasonal and interannual variability in the Mediterranean Sea using a numerical ocean model. Prog. Oceanogr. 66, 321–340 (2005).

    ADS  Article  Google Scholar 

  • 27.

    Pinot, J.-M., López-Jurado, J. L. & Riera, M. The Canales experiment (1996–1998). Interannual, seasonal and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr. 55, 335–370 (2002).

    ADS  Article  Google Scholar 

  • 28.

    García-Merchán, V. H. et al. Phylogeographic patterns of decapod crustaceans at the Atlantic-Mediterranean transition. Mol. Phylogenet. Evol. 62, 664–672 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Cartes, J. E., Madurell, T., Fanelli, E. & López-Jurado, J. L. Dynamics of suprabenthos-zooplankton communities around the Balearic Islands (western Mediterranean): influence of environmental variables and effects on the biological cycle of Aristeus antennatus. J. Mar. Syst. 71, 316–335 (2008).

    Article  Google Scholar 

  • 30.

    Company, J. B. et al. Climate influence on deep sea populations. PLoS ONE 3, e1431 (2008).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Direcció General d’Agricultura, Ramadería, Pesca i Alimentació. Programa d’Acció Marítima. Estratègia marítima de Catalunya 2030—Pla Estratègic 2018–2021 (2018).

  • 32.

    Food and Agriculture Organization. General Fisheries Commission for the Mediterranean; Report of the nineteenth session of the Scientific Advisory Committee on Fisheries. FAO Fish. Rep. 1209, 1–174 (2017).

  • 33.

    Planella, L., Vera, M., García-Marín, J.-L., Heras, S. & Roldán, M. I. Mating structure of the blue and red shrimp, Aristeus antennatus (Risso, 1816) characterized by relatedness analysis. Sci. Rep. 9, 7227 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Heras, S., Planella, L., García-Marín, J.-L., Vera, M. & Roldán, M. I. Genetic structure and population connectivity of the blue and red shrimp Aristeus antennatus. Sci. Rep. 9, 13531 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Jorquera, E., Anstey, L., Paterson, I., Kenchington, E. & Ruzzante, D. E. Isolation and characterization of 26 novel microsatellite loci in the deep-sea shrimp Acanthephyra pelagica. Conserv. Genet. Resour. 6, 731–733 (2014).

    Article  Google Scholar 

  • 36.

    Jacobson, A., Plouviez, S., Thaler, A. D. & Van Dover, C. L. Characterization of 13 polymorphic microsatellite loci in Rimicaris hybisae, a shrimp from deep-sea hydrothermal vents. Conserv. Genet. Resour. 5, 449–451 (2013).

    Article  Google Scholar 

  • 37.

    Arculeo, M., Pellerito, R. & Bonhomme, F. Isolation and use of microsatellite loci in Melicertus kerathurus (Crustacea, Penaeidae). Aquat. Living Resour. 23, 103–107 (2010).

    CAS  Article  Google Scholar 

  • 38.

    Benzie, J. A. H. Population genetic structure in penaeid prawns. Aquac. Res. 31, 95–119 (2000).

    Article  Google Scholar 

  • 39.

    Maggio, T., Lo Brutto, S., Cannas, R., Deiana, A. M. & Arculeo, M. Environmental features of deep-sea habitats linked to the genetic population structure of a crustacean species in the Mediterranean Sea. Mar. Ecol. 30, 354–365 (2009).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Palumbi, S. R. Marine reserves and ocean neighbourhoods: the spatial scale of marine populations and their management. Annu. Rev. Environ. Resour. 29, 31–68 (2004).

    Article  Google Scholar 

  • 41.

    Anger, K. Contributions of larval biology to crustacean research: a review. Invertebr. Reprod. Dev. 49, 175–205 (2006).

    Article  Google Scholar 

  • 42.

    Palmas, F., Olita, A., Addis, P., Sorgente, R. & Sabatini, A. Modelling giant red shrimp larval dispersal in the Sardinian seas: density and connectivity scenarios. Fish. Oceanogr. 26, 364–378 (2017).

    Article  Google Scholar 

  • 43.

    Mokhtar-Jamaï, K. et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol. Ecol. 20, 3291–3305 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Schunter, C. et al. Genetic connectivity patterns in an endangered species: The dusky grouper (Epinephelus marginatus). J. Exp. Mar. Biol. Ecol. 401, 126–133 (2011).

    Article  Google Scholar 

  • 45.

    Carbonell, A. Evaluación de la gamba rosada, Aristeus antennatus (Risso, 1816), en el Mar Balear. (University of the Balearic Islands, Mallorca, Spain, 2005).

  • 46.

    Sardà, F., Company, J. B., Rotllant, G. & Coll, M. Biological patterns and ecological indicators for Mediterranean fish and crustaceans below 1,000 m: a review. Rev. Fish. Biol. Fish. 19, 329–347 (2009).

    Article  Google Scholar 

  • 47.

    Paradis, S. et al. Spatial distribution of sedimentation-rate increases in Blanes Canyon caused by technification of bottom trawling fleet. Prog. Oceanogr. 169, 241–252 (2018).

    ADS  Article  Google Scholar 

  • 48.

    Clavel-Henry, M. et al. Influence of the summer deep-sea circulations on passive drifts among the submarine canyons in the northwestern Mediterranean Sea. Ocean. Sci. 15, 1745–1759 (2019).

    ADS  Article  Google Scholar 

  • 49.

    Masó, M. & Tintoré, J. Variability of the shelf water off the northeast Spanish coast. J. Mar. Syst. 1, 441–450 (1991).

    Article  Google Scholar 

  • 50.

    Ahumada-Sempoal, M.-A., Flexas, M. M., Bernardello, R., Bahamon, N. & Cruzado, A. Northern Current variability and its impact on the Blanes Canyon circulation: a numerical study. Prog. Oceanogr. 118, 61–70 (2013).

    ADS  Article  Google Scholar 

  • 51.

    Fernandez-Arcaya, U. et al. Ecological role of submarine canyons and need for canyon conservation: a review. Front. Mar. Sci. 4, 1–26 (2017).

    ADS  Article  Google Scholar 

  • 52.

    Zúñiga, D. et al. Particle fluxes dynamics in Blanes submarine canyon (Northwestern Mediterranean). Prog. Oceanogr. 82, 239–251 (2009).

    ADS  Article  Google Scholar 

  • 53.

    Durrieu de Madron, X. et al. Interaction of dense shelf water cascading and open-sea convection in the northwestern Mediterranean during winter 2012. Geophys. Res. Lett. 40, 1379–1385 (2013).

    ADS  Article  Google Scholar 

  • 54.

    Cisneros, M. et al. Deep-water formation variability in the north-western Mediterranean Sea during the last 2500 yr: a proxy validation with present-day data. Glob. Planet. Change 177, 56–68 (2019).

    ADS  Article  Google Scholar 

  • 55.

    Román, S. et al. High spatiotemporal variability in meiofaunal assemblages in Blanes Canyon (NW Mediterranean) subject to anthropogenic and natural disturbances. Deep. Sea Res Part I Oceanogr. Res. Pap. 117, 70–83 (2016).

    ADS  Article  CAS  Google Scholar 

  • 56.

    Fernández, M. V., Heras, S., Maltagliati, F. & Roldán, M. I. Deep genetic divergence in giant red shrimp Aristaeomorpha foliacea (Risso, 1827) across a wide distributional range. J. Sea. Res. 76, 146–153 (2013).

    ADS  Article  Google Scholar 

  • 57.

    Heras, S. et al. Development and characterization of novel microsatellite markers by Next Generation Sequencing for the blue and red shrimp Aristeus antennatus. PeerJ 4, e2200 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Accessed 20 Nov 2019; https://www2.unil.ch/popgen/softwares/fstat.htm (2001).

  • 59.

    Rousset, F. GENEPOP´007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).

    CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 62.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article  CAS  Google Scholar 

  • 63.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    Article  Google Scholar 

  • 64.

    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article  Google Scholar 

  • 69.

    Ryman, N. & Palm, S. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).

    Article  Google Scholar 

  • 70.

    Hill, W. G. Estimation of effective population size from data on linkage disequilibrium. Genet. Res. 38, 209–216 (1981).

    Article  Google Scholar 

  • 71.

    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).

    Article  Google Scholar 

  • 72.

    Do, C. et al. NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Rohlf, F. J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Setauket, New York (1993).

  • 75.

    Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475 (2016).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT labs win top recognition for sustainable practices in cold storage management

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award