in

Geographic variation in baseline innate immune function does not follow variation in aridity along a tropical environmental gradient

  • 1.

    Lieth, H. Modeling the Primary Productivity of the World. In Primary Productivity of the Biosphere (eds. Lieth, H. & Whittaker, R. H.) 237–263 (Springer Berlin Heidelberg). https://doi.org/10.1007/978-3-642-80913-2_12 (1975).

  • 2.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

  • 3.

    Altizer, S. et al. Seasonality and the dynamics of infectious diseases: Seasonality and infectious diseases. Ecol. Lett. 9, 467–484 (2006).

  • 4.

    Lisovski, S., Hoye, B. J. & Klaassen, M. Geographic variation in seasonality and its influence on the dynamics of an infectious disease. Oikos 126, 931–936 (2017).

    • Article
    • Google Scholar
  • 5.

    Little, R. M. & Earlé, R. A. Sandgrouse (pterocleidae) and sociable weavers Philetarius socius lack avian haematozoa in semi-arid regions of South Africa. J. Arid Environ. 30, 367–370 (1995).

  • 6.

    Valera, F., Carrillo, C. M., Barbosa, A. & Moreno, E. Low prevalence of haematozoa in Trumpeter finches Bucanetes githagineus from south-eastern Spain: additional support for a restricted distribution of blood parasites in arid lands. J. Arid Environ. 55, 209–213 (2003).

  • 7.

    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology Drives the Worldwide Distribution of Human Diseases. PLOS Biol. 2, e141 (2004).

  • 8.

    Piersma, T. Do Global Patterns of Habitat Use and Migration Strategies Co-Evolve with Relative Investments in Immunocompetence due to Spatial Variation in Parasite Pressure? Oikos 80, 623 (1997).

    • Article
    • Google Scholar
  • 9.

    Mendes, L., Piersma, T., Lecoq, M., Spaans, B. & Ricklefs, R. E. Disease-Limited Distributions? Contrasts in the Prevalence of Avian Malaria in Shorebird Species Using Marine and Freshwater Habitats. Oikos 109, 396–404 (2005).

    • Article
    • Google Scholar
  • 10.

    O’Connor, E. A., Cornwallis, C. K., Hasselquist, D., Nilsson, J.-Å. & Westerdahl, H. The evolution of immunity in relation to colonization and migration. Nat. Ecol. Evol. 1 (2018) https://doi.org/10.1038/s41559-018-0509-3.

  • 11.

    Hosseini, P. R., Dhondt, A. A. & Dobson, A. Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. Proc. R. Soc. Lond. B Biol. Sci. 271, 2569–2577 (2004).

    • Article
    • Google Scholar
  • 12.

    Lowen, A. C., Mubareka, S., Steel, J. & Palese, P. Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLOS Pathog. 3, e151 (2007).

  • 13.

    Metcalf, C. J. E. Invisible Trade-offs: Van Noordwijk and de Jong and Life-History Evolution. Am. Nat. 187, iii–v (2016).

  • 14.

    Janeway, C. A. et al. Immunobiology. (Garland Science) (2001).

  • 15.

    Horrocks, N. P. C., Matson, K. D. & Tieleman, B. I. Pathogen Pressure Puts Immune Defense into Perspective. Integr. Comp. Biol. 51, 563–576 (2011).

  • 16.

    Lochmiller, R. L., Vestey, M. R. & Boren, J. C. Relationship between protein nutritional status and immunocompetence in northern bobwhite chicks. The Auk 503–510 (1993).

  • 17.

    Nunn, C. L., Altizer, S. M., Sechrest, W. & Cunningham, A. A. Latitudinal gradients of parasite species richness in primates: Latitude and parasite species richness. Divers. Distrib. 11, 249–256 (2005).

    • Article
    • Google Scholar
  • 18.

    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

  • 19.

    Salkeld, D. J., Trivedi, M. & Schwarzkopf, L. Parasite loads are higher in the tropics: temperate to tropical variation in a single host-parasite system. Ecography 31, 538–544 (2008).

    • Article
    • Google Scholar
  • 20.

    Møller, A. P. Evidence of Larger Impact of Parasites on Hosts in the Tropics: Investment in Immune Function within and outside the Tropics. Oikos 82, 265–270 (1998).

    • Article
    • Google Scholar
  • 21.

    Ndithia, H. K., Bakari, S. N., Matson, K. D., Muchai, M. & Tieleman, B. I. Geographical and temporal variation in environmental conditions affects nestling growth but not immune function in a year-round breeding equatorial lark. Front. Zool. 14 (2017).

  • 22.

    Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).

  • 23.

    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).

  • 24.

    Klasing, K. C. Nutritional modulation of resistance to infectious diseases. Poult. Sci. 77, 1119–1125 (1998).

  • 25.

    Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    • Article
    • Google Scholar
  • 26.

    Versteegh, M. A., Helm, B., Kleynhans, E. J., Gwinner, E. & Tieleman, B. I. Genetic and phenotypically flexible components of seasonal variation in immune function. J. Exp. Biol. 217, 1510–1518 (2014).

  • 27.

    Mangino, M., Roederer, M., Beddall, M. H., Nestle, F. O. & Spector, T. D. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nat. Commun. 8 (2017).

  • 28.

    Helm, B. & Gwinner, E. Timing of Postjuvenal Molt in African (Saxicola torquata axillaris) and European (Saxicola torquata rubicola) Stonechats: Effects of Genetic and Environmental Factors. The Auk 116, 589–603 (1999).

    • Article
    • Google Scholar
  • 29.

    Horrocks, N. P. C. et al. Immune Indexes of Larks from Desert and Temperate Regions Show Weak Associations with Life History but Stronger Links to Environmental Variation in Microbial Abundance. Physiol. Biochem. Zool. 85, 504–515 (2012).

  • 30.

    Horrocks, N. P. C. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).

  • 31.

    Nelson, R. J., Demas, G. E., Klein, S. L. & Kriegsfeld, L. J. Seasonal Patterns of Stress, Immune Function, and Disease. (Cambridge University Press (2002).

  • 32.

    Hegemann, A., Matson, K. D., Both, C. & Tieleman, B. I. Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 170, 605–618 (2012).

  • 33.

    Elgood, J. H., Sharland, R. E. & Ward, P. Palaearctic Migrants in Nigeria. Ibis 108, 84–116 (1966).

    • Article
    • Google Scholar
  • 34.

    Elgood, J. H., Fry, C. H. & Dowsett, R. J. African Migrants in Nigeria. Ibis 115, 1–45 (1973).

    • Article
    • Google Scholar
  • 35.

    Nwaogu, C. J. & Cresswell, W. Body reserves in intra-African migrants. J. Ornithol. 157, 125–135 (2016).

    • Article
    • Google Scholar
  • 36.

    Crowe, T. M., Rebelo, A. G., Lawson, W. J. & Manson, A. J. Patterns of Variation in Body-Mass of the Black-Eyed Bulbul Pycnonotus Barbatus. Ibis 123, 336–345 (1981).

    • Article
    • Google Scholar
  • 37.

    Nwaogu, C. J., Tieleman, B. I., Bitrus, K. & Cresswell, W. Temperature and aridity determine body size conformity to Bergmann’s rule independent of latitudinal differences in a tropical environment. J. Ornithol. 159, 1053–1062 (2018).

  • 38.

    Nwaogu, C. J., Tieleman, B. I. & Cresswell, W. Weak breeding seasonality of a songbird in a seasonally arid tropical environment arises from individual flexibility and strongly seasonal moult. Ibis 161, 533–545 (2019).

    • Article
    • Google Scholar
  • 39.

    Milla, A., Doumandji, S., Voisin, J.-F. & Baziz, B. Régime alimentaire du bulbul des jardins Pycnonotus barbatus (aves, pycnonotidae) dans le Sahel Algérois (Algérie). 60, 12 (2005).

  • 40.

    Okosodo, E. F., Obasogie, F. O. & Orimaye, J. O. Food and Feeding Ecology of Common Bulbul (Pycnonotus barbatus) in Leventis Foundation Agricultural School Ilesa South Western Nigeria. Greener J. Agric. Sci. 6, 010–016 (2016).

    • Article
    • Google Scholar
  • 41.

    Matson, K. D., Cohen, A. A., Klasing, K. C., Ricklefs, R. E. & Scheuerlein, A. No simple answers for ecological immunology: relationships among immune indices at the individual level break down at the species level in waterfowl. Proc. R. Soc. B Biol. Sci. 273, 815–822 (2006).

    • Article
    • Google Scholar
  • 42.

    Versteegh, M. A., Schwabl, I., Jaquier, S. & Tieleman, B. I. Do immunological, endocrine and metabolic traits fall on a single Pace-of-Life axis? Covariation and constraints among physiological systems. J. Evol. Biol. 25, 1864–1876 (2012).

  • 43.

    Nwaogu, C. J., Cresswell, W., Versteegh, M. A. & Tieleman, B. I. Seasonal differences in baseline innate immune function are better explained by environment than annual cycle stage in a year-round breeding tropical songbird. J. Anim. Ecol. 88, 537–553 (2019).

  • 44.

    Tieleman, B. I., Williams, J. B., Ricklefs, R. E. & Klasing, K. C. Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc. R. Soc. B Biol. Sci. 272, 1715–1720 (2005).

    • Article
    • Google Scholar
  • 45.

    Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286 (2005).

  • 46.

    Adamo, S. How should behavioral ecologists interpret measures of immunity? vol. 68 (2004).

  • 47.

    Pascual, M., Bouma, M. J. & Dobson, A. P. Cholera and climate: revisiting the quantitative evidence. Microbes Infect. 4, 237–245 (2002).

  • 48.

    Young, B. E., Garvin, M. C. & McDonald, D. B. Blood parasites in birds from Monteverde, Costa Rica. J. Wildl. Dis. 29, 555–560 (1993).

  • 49.

    Forbes, K. M. et al. Food limitation constrains host immune responses to nematode infections. Biol. Lett. 12, 20160471 (2016).

  • 50.

    Nwaogu, C. J., Galema, A., Cresswell, W., Dietz, M. W. & Tieleman, B. I. A fruit diet rather than invertebrate diet maintains a robust innate immunity in an omnivorous tropical songbird. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13152 (2019).

  • 51.

    Xu, D.-L., Hu, X.-K. & Tian, Y.-F. Effect of temperature and food restriction on immune function in striped hamsters (Cricetulus barabensis). J. Exp. Biol. 220, 2187–2195 (2017).

  • 52.

    Martonne, E. de. Une Nouvelle fonction climatologique: L’Indice d’aridité. (Impr. Gauthier-Villars (1926).

  • 53.

    Horrocks, N. P. C., Irene Tieleman, B. & Matson, K. D. A simple assay for measurement of ovotransferrin – a marker of inflammation and infection in birds: Ovotransferrin assay for plasma from wild birds. Methods Ecol. Evol. 2, 518–526 (2011).

    • Article
    • Google Scholar
  • 54.

    Jain, S., Gautam, V. & Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci. 3, 118–127 (2011).

  • 55.

    Matson, K. D., Horrocks, N. P. C., Versteegh, M. A. & Tieleman, B. I. Baseline haptoglobin concentrations are repeatable and predictive of certain aspects of a subsequent experimentally induced inflammatory response. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 162, 7–15 (2012).

  • 56.

    Hegemann, A., Matson, K. D., Versteegh, M. A., Villegas, A. & Tieleman, B. I. Immune response to an endotoxin challenge involves multiple immune parameters and is consistent among the annual-cycle stages of a free-living temperate zone bird. J. Exp. Biol. 216, 2573–2580 (2013).

  • 57.

    Gruys, E., Toussaint, M. J. M., Niewold, T. A. & Koopmans, S. J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6, 1045–1056 (2005).

  • 58.

    Giansanti, F., Leboffe, L., Pitari, G., Ippoliti, R. & Antonini, G. Physiological roles of ovotransferrin. Biochim. Biophys. Acta BBA – Gen. Subj. 1820, 218–225 (2012).

  • 59.

    Sild, E. & Hõrak, P. Nitric Oxide Production: An Easily Measurable Condition Index for Vertebrates. Behav. Ecol. Sociobiol. 63, 959–966 (2009).

    • Article
    • Google Scholar
  • 60.

    Ochsenbein, A. F. & Zinkernagel, R. M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today 21, 624–630 (2000).

  • 61.

    Schmid-Hempel, P. & Ebert, D. On the evolutionary ecology of specific immune defence. Trends Ecol. Evol. 18, 27–32 (2003).

    • Article
    • Google Scholar
  • 62.

    Panda, S. & Ding, J. L. Natural Antibodies Bridge Innate and Adaptive Immunity. J. Immunol. 194, 13–20 (2015).

  • 63.

    Ochsenbein, A. F. et al. Control of Early Viral and Bacterial Distribution and Disease by Natural Antibodies. Science 286, 2156–2159 (1999).

  • 64.

    Reid, R. R., Prodeus, A. P., Khan, W., Hsu, T. & Rosen, F. S. Endotoxin shock in antibody-deficient mice: unraveling the role of natural antibody and complement in the clearance of lipopolysaccharide. 7 (1997).

  • 65.

    Belperron, A. A. & Bockenstedt, L. K. Natural Antibody Affects Survival of the Spirochete Borrelia burgdorferi within Feeding Ticks. Infect. Immun. 69, 6456–6462 (2001).

  • 66.

    Erni, B., Bonnevie, B. T., Oschadleus, H.-D., Altwegg, R. & Underhill, L. G. Moult: an r package to analyse moult in birds. J. Stat. Softw. 52, 1–23 (2013).

    • Article
    • Google Scholar
  • 67.

    Buehler, D. M., Piersma, T., Matson, K. & Tieleman, B. I. Seasonal Redistribution of Immune Function in a Migrant Shorebird: Annual‐Cycle Effects Override Adjustments to Thermal Regime. Am. Nat. 172, 783–796 (2008).

  • 68.

    Gosler, A. G., Greenwood, J. J. D., Baker, J. K. & Davidson, N. C. The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study 45, 92–103 (1998).

    • Article
    • Google Scholar
  • 69.

    R Development Core Team, R. A language and environment for statistical computing. vol. 1 (2006).

  • 70.

    Tieleman, B. I., Versteegh, M. A., Klasing, K. C. & Williams, J. B. Constitutive innate immunity of tropical House Wrens varies with season and reproductive activity. The Auk 10 (2019).

  • 71.

    Hasselquist, D. & Nilsson, J.-Å. Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Anim. Behav. 83, 1303–1312 (2012).

    • Article
    • Google Scholar
  • 72.

    Dammhahn, M., Dingemanse, N. J., Niemelä, P. T. & Réale, D. Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life history. Behav. Ecol. Sociobiol. 72, 62 (2018).

    • Article
    • Google Scholar
  • 73.

    Monceau, K. et al. Personality, immune response and reproductive success: an appraisal of the pace-of-life syndrome hypothesis. J. Anim. Ecol. 86, 932–942 (2017).

  • 74.

    Horrocks, N. P. C., Matson, K. D., Shobrak, M., Tinbergen, J. M. & Tieleman, B. I. Seasonal patterns in immune indices reflect microbial loads on birds but not microbes in the wider environment. Ecosphere 3, art19 (2012).

    • Article
    • Google Scholar
  • 75.

    Johnson, C. K. et al. Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proc. Natl. Acad. Sci. USA 106, 2242–2247 (2009).

  • 76.

    Cotter, S. C., Simpson, S. J., Raubenheimer, D. & Wilson, K. Macronutrient balance mediates trade-offs between immune function and life history traits. Funct. Ecol. 25, 186–198 (2011).

    • Article
    • Google Scholar
  • 77.

    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos. Trans. R. Soc. B Biol. Sci. 363, 321–339 (2008).

    • Article
    • Google Scholar
  • 78.

    Allen, P. C. Nitric oxide production during Eimeria tenella infections in chickens. Poult. Sci. 76, 810–813 (1997).

  • 79.

    Read, A. F. & Allen, J. E. The Economics of Immunity. Science 290, 1104–1105 (2000).

  • 80.

    Bourgeon, S., Raclot, T., Le Maho, Y., Ricquier, D. & Criscuolo, F. Innate immunity, assessed by plasma NO measurements, is not suppressed during the incubation fast in eiders. Dev. Comp. Immunol. 31, 720–728 (2007).

  • 81.

    Bogdan, C., Röllinghoff, M. & Diefenbach, A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12, 64–76 (2000).

  • 82.

    O’Connor, E. A., Hasselquist, D., Nilsson, J.-Å., Westerdahl, H. & Cornwallis, C. K. Wetter climates select for higher immune gene diversity in resident, but not migratory, songbirds. Proc. R. Soc. B Biol. Sci. 287, 20192675 (2020).

    • Article
    • Google Scholar
  • 83.

    Horrocks, N. P. et al. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front. Zool. 11, 49 (2014).

  • 84.

    Mendes, L., Piersma, T., Hasselquist, D., Matson, K. D. & Ricklefs, R. E. Variation in the innate and acquired arms of the immune system among five shorebird species. J. Exp. Biol. 209, 284–291 (2006).

  • 85.

    Nunn, C. L. A Comparative Study of Leukocyte Counts and Disease Risk in Primates. Evolution 56, 177–190 (2002).

  • 86.

    Nunn, C. L., Gittleman, J. L. & Antonovics, J. A comparative study of white blood cell counts and disease risk in carnivores. Proc. R. Soc. B Biol. Sci. 270, 347–356 (2003).

    • Article
    • Google Scholar
  • 87.

    Blount, J. D., Houston, D. C., Møller, A. P. & Wright, J. Do individual branches of immune defence correlate? A comparative case study of scavenging and non-scavenging birds. Oikos 102, 340–350 (2003).

    • Article
    • Google Scholar
  • 88.

    Matson, K. D. Are there differences in immune function between continental and insular birds? Proc. R. Soc. B Biol. Sci. 273, 2267–2274 (2006).

  • 89.

    Spottiswoode, C. N. Cooperative Breeding and Immunity: A Comparative Study of PHA Response in African Birds. Behav. Ecol. Sociobiol. 62, 963–974 (2008).

    • Article
    • Google Scholar
  • 90.

    Buehler, D. M., Tieleman, B. I. & Piersma, T. Indices of Immune Function are Lower in Red Knots (Calidris canutus) Recovering Protein than in those Storing Fat During Stopover in Delaware Bay. The Auk 127, 394–401 (2010).

    • Article
    • Google Scholar
  • 91.

    Nwaogu, C. J. Avian life in a seasonally arid tropical environment: adaptations and mechanisms in breeding, moult and immune function. Dr. Thesis Univ. Gron. 237 (2019).


  • Source: Ecology - nature.com

    Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects

    Explained: Cement vs. concrete — their differences, and opportunities for sustainability