in

Global consumption and international trade in deforestation-associated commodities could influence malaria risk

  • 1.

    Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. Malaria. Lancet 391, 1608–1621 (2018).

  • 2.

    WHO—World Health Organization. World Malaria Report 2019 80 (World Health Organization, 2019).

  • 3.

    WHO—World Health Organization. Tables of malaria vaccine projects globally. http://www.who.int/immunization/research/development/Rainbow_tables/en/ (2018).

  • 4.

    WHO—World Health Organization. Global vector control response 2017–2030. http://www.who.int/vector-control/publications/global-control-response/en/ (2018).

  • 5.

    UN—United Nations. Transforming our world: the 2030 Agenda for Sustainable Development 2015. Division for Sustainable Development of United Nations. https://sustainabledevelopment.un.org/post2015/transformingourworld (2018).

  • 6.

    Laval, G. et al. Recent adaptive acquisition by African rainforest hunter-gatherers of the late pleistocene sickle-cell mutation suggests past differences in malaria exposure. Am. J. Hum. Genet. 104, 553–561 (2019).

  • 7.

    Garg, T. Ecosystems and human health: the local benefits of forest cover in Indonesia. J. Environ. Econ. Manag. 98, 102271 (2019).

    • Article
    • Google Scholar
  • 8.

    Berazneva, J. & Byker, T. S. Does forest loss increase human disease? Evidence from Nigeria. Am. Econ. Rev. 107, 516–521 (2017).

  • 9.

    Austin, K., Bellinger, M. & Rana, P. Anthropogenic forest loss and malaria prevalence: a comparative examination of the causes and disease consequences of deforestation in developing nations. AIMS Environ. Sci. 4, 217–231 (2017).

    • Article
    • Google Scholar
  • 10.

    MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl Acad. Sci. 116, 22212–22218 (2019).

  • 11.

    Chaves, L. S. M., Conn, J. E., López, R. V. M. & Sallum, M. A. M. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci. Rep. 8, 7077 (2018).

  • 12.

    Olson, S. H., Gangnon, R., Silveira, G. A. & Patz, J. A. Deforestation and malaria in Mâncio Lima County, Brazil. Emerg. Infect. Dis. 16, 1108–1115 (2010).

  • 13.

    Afrane, Y. A. et al. Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am. J. tropical Med. Hyg. 74, 772–778 (2006).

    • Article
    • Google Scholar
  • 14.

    Afrane, Y. A. et al. Life-table analysis of Anopheles arabiensis in western Kenya highlands: effects of land covers on larval and adult survivorship. Am. J. Tropical Med. Hyg. 77, 660–666 (2007).

    • Article
    • Google Scholar
  • 15.

    Afrane, Y. A. et al. Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya. Emerg. Infect. Dis. 14, 1533–1538 (2008).

  • 16.

    Afrane, Y. A., Githeko, A. K. & Yan, G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of environmental changes in east Africa highlands. Ann. N. Y. Acad. Sci. 1249, 204 (2012).

  • 17.

    Do Manh, C. et al. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam. Malar. J. 9, 259 (2010).

  • 18.

    Parker, D. M. et al. Malaria ecology along the Thailand-Myanmar border. Malar. J. 14, 388 (2015).

  • 19.

    Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).

    • Article
    • Google Scholar
  • 20.

    Barros, F. S. & Honório, N. A. Deforestation and malaria on the amazon frontier: larval clustering of Anopheles darlingi (Diptera: Culicidae) determines focal distribution of malaria. Am. J. Tropical Med. Hyg. 93, 939–953 (2015).

  • 21.

    Lainhart, W. et al. Evidence for temporal population replacement and the signature of ecological adaptation in a major Neotropical malaria vector in Amazonian Peru. Malar. J. 14, 375 (2015).

  • 22.

    Vittor, A. Y. et al. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am. J. Tropical Med. Hyg. 74, 3–11 (2006).

    • Article
    • Google Scholar
  • 23.

    Vittor, A. Y. et al. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am. J. Tropical Med. Hyg. 81, 5–12 (2009).

    • Article
    • Google Scholar
  • 24.

    Naranjo-Díaz, N., Hernandez-Valencia, J. C., Marín, A. & Correa, M. M. Relationship between land cover and Anophelinae species abundance, composition and diversity in NW Colombia. Infect. Genet. Evol. 78, 104114 (2019).

    • Article
    • Google Scholar
  • 25.

    Santos, A. S. & Almeida, A. N. The impact of deforestation on malaria infections in the Brazilian Amazon. Ecol. Econ. 154, 247–256 (2018).

    • Article
    • Google Scholar
  • 26.

    Hiwat, H. & Bretas, G. Ecology of Anopheles darlingi Root with respect to vector importance: a review. Parasite Vectors 4, 177 (2011).

    • Article
    • Google Scholar
  • 27.

    Afrane, Y. A., Lawson, B. W., Githeko, A. K. & Yan, G. Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands. J. Med. Entomol. 42, 974–980 (2005).

  • 28.

    Wallace, D. et al. Modeling the response of Anopheles gambiae (Diptera: Culicidae) populations in the Kenya Highlands to a rise in mean annual temperature. J. Med. Entomol. 54, 299–311 (2016).

    • Google Scholar
  • 29.

    Beck-Johnson, L. M. et al. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE 8, e79276 (2013).

  • 30.

    Laporta, G. Z. et al. Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS Neglected Tropical Dis. 7, e2139 (2013).

    • Article
    • Google Scholar
  • 31.

    Conn, J. E. et al. Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am. J. tropical Med. Hyg. 66, 18–22 (2002).

    • Article
    • Google Scholar
  • 32.

    Wanji, S. et al. Anopheles species of the mount Cameroon region: biting habits, feeding behaviour and entomological inoculation rates. Tropical Med. Int. Health 8, 643–649 (2003).

    • Article
    • Google Scholar
  • 33.

    Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasite Vectors 4, 89 (2011).

    • Article
    • Google Scholar
  • 34.

    Henders, S., Martin, Persson, U. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).

  • 35.

    Wiedmann, T. et al. The material footprint of nations. Proc. Natl Acad. Sci. 112, 6271–6276 (2015).

  • 36.

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

  • 37.

    Katz, I., Komatsu, R., Low-Beer, D. & Atun, R. Scaling up towards international targets for AIDS, tuberculosis, and malaria: contribution of global fund-supported programs in 2011–2015. PLoS ONE 6, e17166 (2011).

  • 38.

    Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Economic Syst. Res. 29, 158–186 (2017).

    • Article
    • Google Scholar
  • 39.

    Leontief, W. W. Studies in the Structure of the American economy: Theoretical and Empirical Explorations in Input-output Analysis 561 (M E Sharpe Incorporated, 1976).

  • 40.

    Lenzo, P., Traverso, M., Salomone, R. & Ioppolo, G. Social life cycle assessment in the textile sector: an Italian case study. Sustainability 9, 2092 (2017).

    • Article
    • Google Scholar
  • 41.

    Hilson, G., Gillani, A. & Kutaula, S. Towards sustainable pro-poor development? A critical assessment of FairTrade gold. J. Clean. Prod. 186, 894–904 (2018).

    • Article
    • Google Scholar
  • 42.

    Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705–709 (2017).

  • 43.

    Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

  • 44.

    Bauhoff, S. & Busch, J. Does deforestation increase malaria prevalence? Evidence from satellite data and health surveys. World Dev. 127, 104734 (2020).

    • Article
    • Google Scholar
  • 45.

    Uneke, C. J. & Ibeh, L. M. Impacts of deforestation on malaria in south-eastern Nigeria: the epidemiological, socio-economic and ecological implications. Int. J. Third World Med. 8, 3–9 (2009).

  • 46.

    Aiyetan, D. How China Fuels Deforestation in Nigeria, West Africa. The ICIR https://www.icirnigeria.org/how-china-fuels-deforestation-in-nigeria-west-africa/ (2018).

  • 47.

    UN—United Nations. UNcomtrade. http://comtrade.un.org/ (2018).

  • 48.

    Kroeger, A., Bakhtary, H., Haupt, F. & Streck, C. Eliminating Deforestation from the Cocoa Supply Chain. (World Bank, Washington, DC, 2017). Working Paper e10.1596/26549.

    • Google Scholar
  • 49.

    Misana, S. B. Deforestation in Tanzania: A Development Crisis? the Experience of Kahama District 76 (Organization for Social Science Research in Eastern and Southern Africa, 1999).

  • 50.

    Geist, H. J. Global assessment of deforestation related to tobacco farming. Tob. Control 8, 18–28 (1999).

  • 51.

    Paul, P., Kangalawe, R. Y. M. & Mboera, L. E. G. Land-use patterns and their implication on malaria transmission in Kilosa District, Tanzania. Tropical Dis., Travel Med. Vaccines 4, 6 (2018).

    • Article
    • Google Scholar
  • 52.

    Lindblade, K. A. et al. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Tropical Med. Int. Health 5, 263–274 (2000).

  • 53.

    Austin, K. F. Brewing unequal exchanges in coffee: a qualitative investigation into the consequences of the Java trade in rural Uganda. J. World-Syst. Res. 23, 326–352 (2017).

    • Article
    • Google Scholar
  • 54.

    Cohuet, A. et al. High malaria transmission intensity due to Anopheles funestus (Diptera: Culicidae) in a village of Savannah–Forest transition area in Cameroon. J. Med. Entomol. 41, 901–905 (2004).

  • 55.

    Manga, L., Toto, J. C. & Carnevale, P. Malaria vectors and transmission in an area deforested for a new international airport in southern Cameroon. Annales Soc.Belg. Méd. Tropicale 75, 43–49 (1995).

    • CAS
    • Google Scholar
  • 56.

    Uneke, C. Deforestation and malaria in sub-Saharan Africa: an overview. Int. J. Third World Med. 6, 1 (2008).

  • 57.

    Noble, M. D. Chocolate and the consumption of forests: a cross-national examination of ecologically unequal exchange in cocoa exports. J. World-Syst. Res. 23, 236–268 (2017).

    • Article
    • Google Scholar
  • 58.

    Janko, M. M. et al. The links between agriculture, mosquitoes, and malaria risk in children younger than 5 years in the Democratic Republic of the Congo: a population-based, cross-sectional, spatial study. Lancet Planet. Health 2, e74–e82 (2018).

  • 59.

    Ryan, S. J. et al. Population pressure and global markets drive a decade of forest cover change in Africa’s Albertine Rift. Appl. Geogr. 81, 52–59 (2017).

    • Article
    • Google Scholar
  • 60.

    Fuller, T. L. et al. Assessing the impact of China’s timber industry on Congo Basin land use change. Area. https://doi.org/10.1111/12469 (2018).

  • 61.

    Wenbin, H. & Xiufang, S. Tropical Hardwood flows in China: Case studies of Rosewood and Okoumé (Forest Trends Association, 2013).

  • 62.

    Barua, S. K., Penttilä, J. & Malmström, M. China as a Timber Consumer and Processing Country: an Analysis of China’s Import and Export Statistics with In-depth Focus on Trade With the EU. WWF-UK. (2017).

  • 63.

    Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).

  • 64.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

  • 65.

    Alonso, P. & Noor, A. M. The global fight against malaria is at crossroads. Lancet 390, 2532–2534 (2017).

    • Article
    • Google Scholar
  • 66.

    Chen, I., Cooney, R., Feachem, R. G. A., Lal, A. & Mpanju-Shumbusho, W. The Lancet Commission on malaria eradication. Lancet 391, 1556–1558 (2018).

    • Article
    • Google Scholar
  • 67.

    Naidoo, R. & Ricketts, T. H. Mapping the economic costs and benefits of conservation. PLoS Biol. 4, e360 (2006).

  • 68.

    Malik, A. & Lan, J. The role of outsourcing in driving global carbon emissions. Econ. Syst. Res. 28, 168–182 (2016).

    • Article
    • Google Scholar
  • 69.

    Hoekstra, R., Michel, B. & Suh, S. The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO2-emission growth. Econ. Syst. Res. 28, 151–167 (2016).

    • Article
    • Google Scholar
  • 70.

    Kanemoto, K., Moran, D., Lenzen, M. & Geschke, A. International trade undermines national emission reduction targets: new evidence from air pollution. Glob. Environ. Change 24, 52–59 (2014).

    • Article
    • Google Scholar
  • 71.

    Baird, K. J. Malaria control by commodities without practical malariology. BMC Public Health 17, 590 (2017).

    • Article
    • Google Scholar
  • 72.

    Reid, M. C. & McKenzie, F. E. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar. J. 15, 107 (2016).

  • 73.

    Gibbs, H. K. et al. Brazil’s Soy Moratorium. Science 347, 377–378 (2015).

  • 74.

    Gibbs, H. K. et al. Did Ranchers and Slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Conserv. Lett. 9, 32–42 (2015).

    • Article
    • Google Scholar
  • 75.

    Chagas, T. et al. Impacts of supply chain commitments on the forest frontier. https://climatefocus.com/sites/default/files/20180626%20WP2%20Report.pdf (2018).

  • 76.

    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).

  • 77.

    Brandi, C. et al. Sustainability standards for palm oil. J. Environ. Dev. 24, 292–314 (2015).

    • Article
    • Google Scholar
  • 78.

    Ostrom, E. et al. Revisiting the commons: local lessons, global challenges. Science 284, 278–282 (1999).

  • 79.

    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Climate Change 1 https://doi.org/10.1038/s41558-017-0061-1 (2018).

  • 80.

    WWF. Analyzing supply risk. http://wwf.panda.org/our_work/markets/mti_solutions/better_production_for_a_living_planet/analyzing_supply_risk.cfm (2018).

  • 81.

    CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora. http://www.cites.org (2018).

  • 82.

    CPD. Carbon disclosure project. https://www.cdp.net (2018).

  • 83.

    Fahimnia, B., Sarkis, J., Choudhary, A. & Eshragh, A. Tactical supply chain planning under a carbon tax policy scheme: a case study. Int. J. Prod. Econ. 164, 206–215 (2015).

    • Article
    • Google Scholar
  • 84.

    Hahn, M. B. et al. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS ONE 9, e85725 (2014).

  • 85.

    Guerra, C., Snow, R. & Hay, S. A global assessment of closed forests, deforestation and malaria risk. Ann. Tropical Med. Parasitol. 100, 189 (2006).

  • 86.

    Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 108 (2017).

  • 87.

    Ndegwa, G. et al. Charcoal contribution to wealth accumulation at different scales of production among the rural population of Mutomo District in Kenya. Energy Sustain. Dev. 33, 167–175 (2016).

    • Article
    • Google Scholar
  • 88.

    Iiyama, M. et al. Conceptual analysis: the charcoal-agriculture nexus to understand the socio-ecological contexts underlying varied sustainability outcomes in African landscapes. Frontiers Environ. Sci. Eng. China 5 https://doi.org/10.3389/fenvs.2017.00031 (2017).

  • 89.

    MAP—Malaria Atlas Project. The Malaria Atlas Project. https://map.ox.ac.uk (2018).

  • 90.

    Hansen, M. C. et al. Global Forest Change. http://earthenginepartners.appspot.com/science-2013-global-forest (2018).

  • 91.

    Cibulskis, R. E. et al. Malaria: global progress 2000–2015 and future challenges. Infect. Dis. Poverty 5, 61 (2016).

  • 92.

    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207 (2015).

  • 93.

    Leontief, W. W. Quantitative input and output relations in the economic system of the United States. Rev. Econ. Stat. 18, 105–125 (1936).

    • Article
    • Google Scholar
  • 94.

    Leontief, W. W. The Structure of the American Economy, 1919–1939. (Oxford University Press, Oxford, UK, 1941).

    • Google Scholar
  • 95.

    UN—United Nations. Handbook of Input-Output Table Compilation and Analysis (United Nations, New York, USA, 1999) http://unstats.un.org/unsd/EconStatKB/Attachment40.aspx.

  • 96.

    Eurostat. Eurostat Manual of Supply, Use and Input-Output Tables. (European Commission, Luxembourg, Luxembourg, 2008).

    • Google Scholar
  • 97.

    UN—United Nations. European Commission, International Monetary Fund, Organisation for Economic Co-operation and Development, World Bank (System of National Accounts 2008, New York, USA, 2009).

  • 98.

    Dixon, J. D. & Mortimer, B. Permutation Groups (Springer Science & Business Media,1996).

  • 99.

    UN—United Nations. UNSTATS http://unstats.un.org/unsd/industry.

  • 100.

    UN—United Nations. Industrial Development Organization—UNIDO Statistical Databases. http://www.unido.org/resources/statistics/statistical-databases.html.

  • 101.

    UN—United Nations. UNdata. http://data.un.org/Browse.aspx?d=SNA.

  • 102.

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

  • 103.

    FAO—Food and Agriculture Organization. FAOstat. http://www.fao.org/faostat/en/ (2018).

  • 104.

    Moran, D. & Wood, R. Convergence between the Eora, WIOD, EXIOBASE, and OpenEU’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels