in

Global phosphorus dynamics in terms of phosphine

  • 1.

    Devai, I., Felföldy, L., Wittner, I. & Plósz, S. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere. Nature 333, 343 (1988).

    Article  Google Scholar 

  • 2.

    Cao, J. et al. Study on effects of electron donors on phosphine production from anaerobic activated sludge. Water 9, 563 (2017).

    Article  Google Scholar 

  • 3.

    Zhang, C., Zhang, K., Wei, W., Rong, H. & Liu, T. Release rule of phosphine in anaerobic sequencing batch process. China Water Wastewater 26, 53–55 (2010).

    Google Scholar 

  • 4.

    Hong, Y. et al. Distribution of phosphine in the offshore area of the Southwest Yellow Sea, East Asia. Mar. Chem. 118, 67–74 (2010).

    Article  Google Scholar 

  • 5.

    Liu, Z., Jia, S., Wang, B. & Liu, S. Differences in phosphine contents of various environment samples and the effecting factors. Acta Scien. Circum. 5, 852–857 (2004).

    Google Scholar 

  • 6.

    Zhu, R., Liu, Y., Sun, J., Sun, L. & Geng, J. Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils. J. Environ. Sci. 21, 150–154 (2009).

    Article  Google Scholar 

  • 7.

    Zhang, R., Wu, M., Wang, Q., Geng, J. & Yang, X. The determination of atmospheric phosphine in Ny-Ålesund. Sci. Bull. 55, 1662–1666 (2010).

    Article  Google Scholar 

  • 8.

    Zhu, R., Ding, W., Hou, L. & Wang, Q. Matrix-bound phosphine and phosphorus fractions in surface sediments of Arctic Kongsfjorden, Svalbard: effects of glacial activity and environmental variables. Chemosphere 103, 240–249 (2014).

    Article  Google Scholar 

  • 9.

    Wang, Q., Geng, J.-j., Jin, H.-m., Shi, H.-h. & Wang, X.-r. Temporal and spatial distributions of microbes and phosphine in Lake Taihu sediments. China Environ. Sci. 26, 350–354 (2006).

    Google Scholar 

  • 10.

    Ding, L. et al. Sources of matrix-bound phosphine in advanced wastewater treatment system. Sci. Bull. 50, 1274–1276 (2005).

    Article  Google Scholar 

  • 11.

    Li, J.-B. et al. Matrix bound phosphine in sediments of the Changjiang Estuary and its adjacent shelf areas. Estuar. Coast. Shelf Sci. 90, 206–211 (2010).

    Article  Google Scholar 

  • 12.

    You, L. et al. Distribution of matrix-bound phosphine in surface sediments of Jinpu Bay. Environ. Sci. 34, 3804–3809 (2013).

    Google Scholar 

  • 13.

    Niu, X. et al. Phosphine in paddy fields and the effects of environmental factors. Chemosphere 93, 1942–1947 (2013).

    Article  Google Scholar 

  • 14.

    Glindemann, D., Edwards, M., Liu, J.-A. & Kuschk, P. Phosphine in soils, sludges, biogases and atmospheric implications—a review. Ecol. Eng. 24, 457–463 (2005).

    Article  Google Scholar 

  • 15.

    Han, S.-H., Zhuang, Y.-H., Liu, J.-A. & Glindemann, D. Phosphorus cycling through phosphine in paddy fields. Sci. Total Environ. 258, 195–203 (2000).

    Article  Google Scholar 

  • 16.

    Han, C., Geng, J., Zhang, R., Wang, X. & Gao, S. Matrix-bound phosphine and phosphorus fractions in paddy soils. J. Environ. Monit. 13, 844–849 (2011).

    Article  Google Scholar 

  • 17.

    Han, C. et al. Production and emission of phosphine gas from wetland ecosystems. J. Environ. Sci. 22, 1309–1311 (2010).

    Article  Google Scholar 

  • 18.

    Glindemann, D., Stottmeister, U. & Bergmann, A. Free phosphine from the anaerobic biosphere. Environ. Sci. Pollut. Res. 3, 17–19 (1996).

    Article  Google Scholar 

  • 19.

    Wang, J., Niu, X., Ma, J. & Lu, M. Conversion of phosphorus to phosphine by microbial deoxidization under anaerobic conditions. Microbiol. China 1, 34–41 (2015).

    Google Scholar 

  • 20.

    Ding, L. et al. Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge. Chemosphere 59, 49–54 (2005).

    Article  Google Scholar 

  • 21.

    Zhang, R. et al. Effects of free-air CO2 enrichment on phosphine emission from rice field. Environ. Sci. 30, 2694–2700 (2009).

    Google Scholar 

  • 22.

    Ma, J., Chen, W., Niu, X. & Fan, Y. The relationship between phosphine, methane, and ozone over paddy field in Guangzhou, China. Glob. Ecol. Conserv. 17, 1–7 (2019).

    Google Scholar 

  • 23.

    Zhang, C., Zhang, K., Sun, L., Rong, H. & Liu, T. Effect of carbon sources on phoshpine production from anaerobic activated sludge. China Water Wastewater 29, 103–106 (2013).

    Google Scholar 

  • 24.

    Liu, J.-A. et al. Phosphine in the urban air of Beijing and its possible sources. Water Air Soil Pollut. 116, 597–604 (1999).

    Article  Google Scholar 

  • 25.

    Niu, X. et al. Temporal and spatial distributions of phosphine in Taihu Lake, China. Sci. Total Environ. 323, 169–178 (2004).

    Article  Google Scholar 

  • 26.

    Zhu, R. et al. Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol. 40, 7656–7661 (2006).

    Article  Google Scholar 

  • 27.

    Zhu, R., Kong, D., Sun, L., Geng, J. & Wang, X. The first determination of atmospheric phosphine in Antarctica. Sci. Bull. 52, 131–135 (2007).

    Article  Google Scholar 

  • 28.

    Zhu, R. et al. Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmos. Environ. 41, 1567–1573 (2007).

    Article  Google Scholar 

  • 29.

    An, S. et al. Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO2in paddy soils. Environ. Pollut. 239, 253–260 (2018).

    Article  Google Scholar 

  • 30.

    Zhang, K., Zhang, C., Wei, W., Rong, H. & Liu, T. Phosphine release in aerobic sequencing reactor process and anaerobic/aerobic sequencing reactor process. Environ. Eng. 5, 127–129 (2011).

    Google Scholar 

  • 31.

    Ding, L. et al. Distribution of phosphine and phosphorus balance in a full scale UASB system. J. Nanjing Uni. Nat. Sci. 41, 620–626 (2005).

    Google Scholar 

  • 32.

    Hou, L. et al. Emission of phosphine in intertidal marshes of the Yangtze Estuary. Appl. Geochem. 26, 2260–2265 (2011).

    Article  Google Scholar 

  • 33.

    Glindemann, D., Bergmann, A., Stottmeister, U. & Gassmann, G. Phosphine in the lower terrestrial troposphere. Naturwissenschaften 83, 131–133 (1996).

    Article  Google Scholar 

  • 34.

    Feng, Y., Wang, Q., Yao, Z. & Geng, J. Research on distribution of phosphine in the natural environment and its environmental factors. Chin. High. Technol. Lett. 19, 650–655 (2009).

    Google Scholar 

  • 35.

    Geng, J. et al. Simultaneous monitoring of phosphine and of phosphorus species in Taihu Lake sediments and phosphine emission from lake sediments. Biogeochemistry 76, 283–298 (2005).

    Article  Google Scholar 

  • 36.

    Han, C. et al. Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China. Environ. Pollut. 159, 630–635 (2011).

    Article  Google Scholar 

  • 37.

    Glindemann, D., Edwards, M. & Kuschk, P. Phosphine gas in the upper troposphere. Atmos. Environ. 37, 2429–2433 (2003).

    Article  Google Scholar 

  • 38.

    Gassmann, G., Van Beusekom, J. & Glindemann, D. Offshore atmospheric phosphine. Naturwissenschaften 83, 129–131 (1996).

    Article  Google Scholar 

  • 39.

    Roels, J. & Verstraete, W. Occurrence and origin of phosphine in landfill gas. Sci. Total Environ. 327, 185–196 (2004).

    Article  Google Scholar 

  • 40.

    Han, S.-h., Wang, Z.-j., Zhuang, Y.-h., Yu, Z.-m. & Glindemann, D. Phosphine in various matrixes. J. Environ. Sci. (China) 15, 339–341 (2003).

    Google Scholar 

  • 41.

    Devai, I., DeLaune, R., Devai, G., Patrick, J. W. H. & Czegeny, I. Phosphine production potential of various wastewater and sewage sludge sources. Anal. Lett. 32, 1447–1457 (1999).

    Article  Google Scholar 

  • 42.

    Zhu, R. et al. Matrix-bound phosphine in Antarctic biosphere. Chemosphere 64, 1429–1435 (2006).

    Article  Google Scholar 

  • 43.

    Niu, X. et al. Matrix-bound phosphine in the paddy soils of South China and its relationship to environmental factors and bacterial composition. J. Soils Sediment. 16, 592–604 (2016).

    Article  Google Scholar 

  • 44.

    Zhang, J., Geng, J., Zhang, R., Ren, H. & Wang, X. Matrix-bound phosphine in paddy fields under a simulated increase in global atmospheric CO2. Environ. Chem. 7, 287–291 (2010).

    Article  Google Scholar 

  • 45.

    Eismann, F., Glindemann, D., Bergmannt, A. & Kuschk, P. Soils as source and sink of phosphine. Chemosphere 35, 523–533 (1997).

    Article  Google Scholar 

  • 46.

    Devai, I. & Delaune, R. Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Org. Geochem. 23, 277–279 (1995).

    Article  Google Scholar 

  • 47.

    Gassmann, G. Phosphine in the fluvial and marine hydrosphere. Mar. Chem. 45, 197–205 (1994).

    Article  Google Scholar 

  • 48.

    Gassmann, G. & Schorn, E. Phosphine from harbor surface sediments. Naturwissenschaften 80, 78–80 (1993).

    Article  Google Scholar 

  • 49.

    Song, X. et al. Matrix-bound phosphine in sediments from Lake Illawarra, New South Wales, Australia. Mar. Pollut. Bull. 62, 1744–1750 (2011).

    Article  Google Scholar 

  • 50.

    Feng, Z., Song, X. & Yu, Z. Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Mar. Pollut. Bull. 56, 1630–1636 (2008).

    Article  Google Scholar 

  • 51.

    Feng, Z., Song, X. & Yu, Z. Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls. Chemosphere 73, 519–525 (2008).

    Article  Google Scholar 

  • 52.

    Yu, Z. & Song, X. Matrix-bound phosphine: a new form of phosphorus found in sediment of Jiaozhou Bay. Sci. Bull. 48, 31–35 (2003).

    Article  Google Scholar 

  • 53.

    Mu, Q., Song, X. & Yu, Z. Matrix-bound phosphine (PH3) distribution characteristics in the sediments of Jiaozhou Bay. China Environ. Sci. 26, 135–138 (2005).

    Google Scholar 

  • 54.

    Zhu, R. et al. Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables. Sci. Total Environ. 409, 3789–3800 (2011).

    Article  Google Scholar 

  • 55.

    Eismann, F., Glindemann, D., Bergmann, A. & Kuschk, P. Balancing phosphine in manure fermentation. J. Environ. Sci. Health B 32, 955–968 (1997).

    Article  Google Scholar 

  • 56.

    Li, J.-B., Zhang, G.-L., Zhang, J., Liu, S.-M. & Ren, J.-L. Matrix bound phosphine in sediments of the yellow sea and its coastal areas. Cont. Shelf Res. 30, 743–751 (2010).

    Article  Google Scholar 

  • 57.

    Han, C., Geng, J., Zhang, J., Wang, X. & Gao, S. Phosphine migration at the water–air interface in Lake Taihu, China. Chemosphere 82, 935–939 (2011).

    Article  Google Scholar 

  • 58.

    Glindemann, D., Edwards, M. & Schrems, O. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos. Environ. 38, 6867–6874 (2004).

    Article  Google Scholar 

  • 59.

    Bains, W., Petkowski, J. J., Sousa-Silva, C. & Seager, S. New environmental model for thermodynamic ecology of biological phosphine production. Sci. Total Environ. 658, 521–536 (2019).

    Article  Google Scholar 

  • 60.

    Cao, H., Liu, J., Zhuang, Y. & Dietmar, G. Emission sources of atmospheric phosphine and simulation of phosphine formation. Sci. China, Ser. B: Chem. 43, 162 (2000).

    Article  Google Scholar 

  • 61.

    Zhu, R. et al. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils. Sci. Rep. 4, 1–9 (2014).

    Google Scholar 

  • 62.

    Roels, J. & Verstraete, W. Biological formation of volatile phosphorus compounds. Bioresour. Technol. 79, 243–250 (2001).

    Article  Google Scholar 

  • 63.

    Sun, L., Zhang, C., Zhang, K., Rong, H. & Liu, T. Effects of different phosphorus sources on phosphine production from anaerobic sludge. China Water Wastewater 28, 89–91 (2012).

    Google Scholar 

  • 64.

    Jenkins, R., Morris, T.-A., Craig, P. J., Ritchie, A. & Ostah, N. Phosphine generation by mixed-and monoseptic-cultures of anaerobic bacteria. Sci. Total Environ. 250, 73–81 (2000).

    Article  Google Scholar 

  • 65.

    Glindemann, D., Edwards, M. & Morgenstern, P. Phosphine from rocks: mechanically driven phosphate reduction? Environ. Sci. Technol. 39, 8295–8299 (2005).

    Article  Google Scholar 

  • 66.

    Glindemann, D., Eismann, F., Bergmann, A., Kuschk, P. & Stottmeister, U. Phosphine by bio-corrosion of phosphide-rich iron. Environ. Sci. Pollut. Res. 5, 71 (1998).

    Article  Google Scholar 

  • 67.

    Glindemann, D., De Graaf, R. & Schwartz, A. W. Chemical reduction of phosphate on the primitive Earth. Orig. Life Evol. Biosphere 29, 555–561 (1999).

    Article  Google Scholar 

  • 68.

    Hammer, D. A. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural (CRC Press, 1989).

  • 69.

    Whitmire, S. L. & Hamilton, S. K. Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape. Wetlands 28, 703–714 (2008).

    Article  Google Scholar 

  • 70.

    Picek, T., Čížková, H. & Dušek, J. Greenhouse gas emissions from a constructed wetland—plants as important sources of carbon. Ecol. Eng. 31, 98–106 (2007).

    Article  Google Scholar 

  • 71.

    Roels, J., Huyghe, G. & Verstraete, W. Microbially mediated phosphine emission. Sci. Total Environ. 338, 253–265 (2005).

    Article  Google Scholar 

  • 72.

    Pasek, M. A role for phosphorus redox in emerging and modern biochemistry. Curr. Opin. Chem. Biol. 49, 53–58 (2019).

    Article  Google Scholar 

  • 73.

    Pasek, M. A., Sampson, J. M. & Atlas, Z. Redox chemistry in the phosphorus biogeochemical cycle. Proc. Nat. Acad. Sci. USA 111, 15468–15473 (2014).

    Article  Google Scholar 

  • 74.

    Han, C. et al. Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China. Environ. Sci. Technol. 47, 5679–5685 (2013).

    Article  Google Scholar 

  • 75.

    Han, C. et al. Determination of phosphite in a eutrophic freshwater lake by suppressed conductivity ion chromatography. Environ. Sci. Technol. 46, 10667–10674 (2012).

    Article  Google Scholar 

  • 76.

    Wang, J., Li, L., Niu, X. & Zou, D. Phosphine-induced phosphorus mobilization in the rhizosphere of rice seedlings. J. Soils Sediment. 16, 1735–1744 (2016).

    Article  Google Scholar 

  • 77.

    Zhang, C.-B. et al. Responses of dissimilatory nitrate reduction to ammonium and denitrification to plant presence, plant species and species richness in simulated vertical flow constructed wetlands. Wetlands 37, 109–122 (2017).

    Article  Google Scholar 

  • 78.

    Li, H., Chen, Z. & Chen, Z. Daily variation of the rhizosphere redox potential of six wetland plants. Acta Ecologica Sin. 34, 5766–5773 (2014).

    Google Scholar 

  • 79.

    Fu, R., Zhu, Y. & Yang, H. DO and ORP conditions and their correlation with plant root distribution in a continuous-flow constructed wetland treating eutrophic water. Acta Scien. Circum. 28, 2036–2038 (2008).

    Google Scholar 

  • 80.

    Colmer, T. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17–36 (2003).

    Article  Google Scholar 

  • 81.

    Liu, S., Li, T., Ning, P., Wu, M. & Yu, S. Research progress of the release, distribution and transformation of phosphine in environment. Chem. Ind. Eng. Prog. 38, 1085–1096 (2019).

    Google Scholar 

  • 82.

    Wang, D., Leng, B., An, X. & Lu, Q. Effects of UV light wave, temperature and humidity on phosphine concentration degrading. Plant Quar. 27, 45–49 (2013).

    Google Scholar 

  • 83.

    Chen, L., Arimoto, R. & Duce, R. A. The sources and forms of phosphorus in marine aerosol particles and rain from northern New Zealand. Atmos. Environ. 19, 779–787 (1985).

    Article  Google Scholar 

  • 84.

    Chen, H. Y. & Chen, L. D. Importance of anthropogenic inputs and continental‐derived dust for the distribution and flux of water‐soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea. J. Geophys. Res. Atmos. 113, D11303 (2008).

    Article  Google Scholar 

  • 85.

    Xu, Z. et al. Dry and wet atmospheric deposition of nitrogen and phosphorus in Taihu Lake. Environ. Monit. Forewarning 119, 37–42 (2019).

    Google Scholar 

  • 86.

    Ma, Z., Zhang, Q. & Qin, Y. Numerical simulation and analysis of the effect of Three Gorges reservoir project on the regional climate change. Res. Environ. Yangtze Basin 19, 1044–1052 (2010).

    Google Scholar 

  • 87.

    Wang, M., Zhou, Y., Ren, Y. & Fang, S. Spatial-temporal change characteristics of precipitation over the key region of Three Gorges Reservoir. Meteorol. Environ. Sci. 40, 40–46 (2017).

    Google Scholar 

  • 88.

    Zhang, S., Lu, Z. & Zhang, N. Analysis of influence of Three Gorges Dam storage on reservoir region precipitation. Water Resour. Power 31, 21–24 (2013).

    Google Scholar 

  • 89.

    Zhang, H. Potential pitfalls in “Hongqi River” water transfer proposal and drought management in Northwest China. Water Resource Prot. 2, 8–11 (2018).

    Google Scholar 

  • 90.

    Prinn, R. G. The interactive atmosphere: global atmospheric-biospheric chemistry. Ambio 23, 50–61 (1994).

    Google Scholar 

  • 91.

    Kleemann, R. et al. Evaluation of local and national effects of recovering phosphorus at wastewater treatment plants: Lessons learned from the UK. Resour. Conserv. Recycl. 105, 347–359 (2015).

    Article  Google Scholar 

  • 92.

    Pradel, M. & Aissani, L. Environmental impacts of phosphorus recovery from a “product” Life Cycle Assessment perspective: allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Sci. Total Environ. 656, 55–69 (2019).

    Article  Google Scholar 

  • 93.

    Humphrey, C. P., Anderson-Evans, E., O’Driscoll, M., Manda, A. & Iverson, G. Comparison of phosphorus concentrations in coastal plain watersheds served by onsite wastewater treatment systems and a municipal sewer treatment system. Water Air Soil Pollut. 226, 2259 (2015).

    Article  Google Scholar 

  • 94.

    Ding, L.-L. et al. Distribution of phosphine and phosphorus balance in a full-scale UASB system. J. Nanjing Uni. Nat. Sci. 41, 620–626 (2005).

    Google Scholar 

  • 95.

    Yang, Z., Zhou, J., Li, J., Han, Y. & He, Q. Pre-processing of raw wastewater in a septic tank leads to phosphorus removal by phosphine production in a sequencing batch biofilm reactor (SBBR). Desalination Water Treat. 57, 810–818 (2016).

    Article  Google Scholar 

  • 96.

    Liu, W., Niu, X., Chen, W., An, S. & Sheng, H. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC). Chemosphere 173, 172–179 (2017).

    Article  Google Scholar 

  • 97.

    Yang, S. & Yao, G. Simultaneous removal of concentrated organics, nitrogen and phosphorus nutrients by an oxygen-limited membrane bioreactor. PLoS ONE 13, e0202179 (2018).

    Article  Google Scholar 

  • 98.

    Zhang, P., Rong, H., Zhang, K., Liu, T. & Cao, Y. Effect of diverse mud and phosphorus sources on total phosphorus removal efficiencies. Guangdong Chem. Ind. 56, 118–119 (2011).

    Google Scholar 

  • 99.

    Han, S., Zhuang, Y., Zhang, H., Wang, Z. & Yang, J. Phosphine and methane generation by the addition of organic compounds containing carbon–phosphorus bonds into incubated soil. Chemosphere 49, 651–657 (2002).

    Article  Google Scholar 

  • 100.

    Rutishauser, B. V. & Bachofen, R. Phosphine formation from sewage sludge cultures. Anaerobe 5, 525–531 (1999).

    Article  Google Scholar 

  • 101.

    Wan, J., Deng, M., He, H. & Tang, A. Factors influencing release of phosphine in piggery wastewater. China Water Wastewater 23, 117–120 (2013).

    Google Scholar 

  • 102.

    Fan, Y., Lv, M., Niu, X., Ma, J. & Song, Q. Evidence and mechanism of biological formation of phosphine from the perspective of the tricarboxylic acid cycle. Int. Biodeterior. Biodegrad. 146, 104791 (2020).

    Article  Google Scholar 

  • 103.

    Fan, Y. et al. Analysis of the characteristics of phosphine production by anaerobic digestion based on microbial community dynamics, metabolic pathways, and isolation of the phosphate-reducing strain. Chemosphere 262, 128213 (2021).

    Article  Google Scholar 

  • 104.

    Wang, R. et al. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci. 8, 48 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

    Field geology at a distance