in

Global plant trait relationships extend to the climatic extremes of the tundra biome

  • 1.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

  • 2.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

  • 3.

    Westoby, M., Jurado, E. & Leishman, M. R. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 7, 368–372 (1992).

  • 4.

    Iversen, C. M. et al. The unseen iceberg: plant roots in arctic tundra. N. Phytologist 205, 34–58 (2015).

    • Article
    • Google Scholar
  • 5.

    Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

  • 6.

    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

  • 7.

    Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    • Article
    • Google Scholar
  • 8.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

  • 9.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

  • 10.

    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).

    • Article
    • Google Scholar
  • 11.

    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).

  • 12.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    • Article
    • Google Scholar
  • 13.

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

  • 14.

    Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).

  • 15.

    Kattge, J. et al. TRY-a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

  • 16.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

  • 17.

    Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).

    • Article
    • Google Scholar
  • 18.

    Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. N. Phytologist 221, 1742–1748 (2019).

    • Article
    • Google Scholar
  • 19.

    Wigley, B. J. et al. Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. J. Ecol. 104, 1357–1369 (2016).

  • 20.

    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 1–9 (2016). https://doi.org/10.1007/s00442-016-3549-x.

  • 21.

    Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).

  • 22.

    Anderegg, L. D. L. et al. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol. Lett. 21, 734–744 (2018).

  • 23.

    Laughlin, D. C. et al. Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecol. Evol. 7, 8936–8949 (2017).

  • 24.

    De La Riva, E. G., Olmo, M., Poorter, H., Ubera, J. L. & Villar, R. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoS ONE 11, e0148788 (2016).

  • 25.

    Fajardo, A. & Piper, F. I. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. N. Phytologist 189, 259–271 (2011).

    • Article
    • Google Scholar
  • 26.

    Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2017).

    • Article
    • Google Scholar
  • 27.

    Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G. & Violle, C. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect. Plant Ecol. Evol. Syst. 13, 217–225 (2011).

    • Article
    • Google Scholar
  • 28.

    Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 1–5 (2016).

    • Google Scholar
  • 29.

    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

  • 30.

    Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).

    • Article
    • Google Scholar
  • 31.

    Manning, P. et al. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J. Appl. Ecol. 52, 1188–1196 (2015).

  • 32.

    Billings, W. D. Constraints to plant growth, reproduction, and establishment in arctic environments. Arct. Alp. Res. 19, 357 (1987).

    • Article
    • Google Scholar
  • 33.

    Thomas, H. J. D. et al. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. Glob. Ecol. Biogeogr. 28, 78–95 (2019).

  • 34.

    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 1–15 (2016).

  • 35.

    Bjorkman, A. D., Vellend, M., Frei, E. R. & Henry, G. H. R. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Glob. Change Biol. 23, 1540–1551 (2017).

  • 36.

    Pérez-Ramos, I. M., Matías, L., Gómez-Aparicio, L. & Godoy, Ó. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat. Commun. 10, 1–11 (2019).

  • 37.

    Elmendorf, S. C. et al. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc. Natl Acad. Sci. USA 112, 448–452 (2015).

  • 38.

    Hudson, J. M. G., Henry, G. H. R. & Cornwell, W. K. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob. Change Biol. 17, 1013–1021 (2011).

  • 39.

    Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).

    • Article
    • Google Scholar
  • 40.

    Hoffmann, A. A. & Merilä, J. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 14, 96–101 (1999).

  • 41.

    Baruah, G., Molau, U., Bai, Y. & Alatalo, J. M. Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Sci. Rep. 7, 2571 (2017).

  • 42.

    Violle, C. et al. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

  • 43.

    Opedal, Ø. H., Armbruster, W. S. & Graae, B. J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Diversity 8, 305–315 (2015).

    • Article
    • Google Scholar
  • 44.

    Elberling, B. Annual soil CO2 effluxes in the High Arctic: The role of snow thickness and vegetation type. Soil Biol. Biochem. 39, 646–654 (2007).

  • 45.

    McGraw, J. B. Experimental ecology of Dryas octopetala ecotypes. III. Environ. Factors Plant Growth Arct. Alp. Res. 17, 229–239 (1985).

    • Google Scholar
  • 46.

    Soudzilovskaia, N. A. et al. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc. Natl Acad. Sci. USA 110, 18180–18184 (2013).

  • 47.

    Wullschleger, S. D. et al. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. 114, 1–16 (2014).

  • 48.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

  • 49.

    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

  • 50.

    Bliss, L. C., Heal, O. W. & Moore, J. J. Tundra Ecosystems: A Comparative Analysis. (CUP Archive, 1981).

  • 51.

    Henry, G. H. R. & Molau, U. Tundra plants and climate change: the International Tundra Experiment (ITEX). Glob. Change Biol. 3, 1–9 (1997).

  • 52.

    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

  • 53.

    Weiher, E. et al. Challenging theophrastus: a common core list of plant traits for functional ecology. J. Vegetation Sci. 10, 609–620 (1999).

    • Article
    • Google Scholar
  • 54.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

  • 55.

    Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).

    • Article
    • Google Scholar
  • 56.

    Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).

    • Article
    • Google Scholar
  • 57.

    Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. N. Phytologist 176, 375–389 (2007).

  • 58.

    Castro-Díez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador, P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66 (1998).

  • 59.

    Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 210, 253–261 (2010).

    • Article
    • Google Scholar
  • 60.

    Ciocarlan, V. The illustrated Flora of Romania. Pteridophyta et Spermatopyta. (Editura Ceres, 2009).

  • 61.

    Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573 (1996).

    • Article
    • Google Scholar
  • 62.

    Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Vegetation Sci. 14, 311–322 (2003).

    • Article
    • Google Scholar
  • 63.

    Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).

    • Article
    • Google Scholar
  • 64.

    Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755 (1996).

    • Article
    • Google Scholar
  • 65.

    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

  • 66.

    Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117 (2011).

  • 67.

    Craine, J. M., Towne, E. G., Ocheltree, T. W. & Nippert, J. B. Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant Soil 356, 395–403 (2012).

  • 68.

    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. N. Phytologist 183, 980–992 (2009).

  • 69.

    Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).

    • Article
    • Google Scholar
  • 70.

    Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Vegetation Sci. 15, 295–304 (2004).

    • Article
    • Google Scholar
  • 71.

    Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alp. Bot. 122, 11–21 (2012).

    • Article
    • Google Scholar
  • 72.

    Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal variation in the relationship between plant traits and grassland carbon and water fluxes. J. Ecol. 17, 1095–1108 (2014).

    • CAS
    • Google Scholar
  • 73.

    Fitter, A. H. & Peat, H. J. The ecological flora database. J. Ecol. 82, 415–425 (1994).

    • Article
    • Google Scholar
  • 74.

    Atkin, O. K., Westbeek, M. H. M., Cambridge, M. L., Lambers, H. & Pons, H. Leaf Respiration in Light and Darkness. Plant Physiol. 113, 961–965 (1997).

  • 75.

    Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).

    • Article
    • Google Scholar
  • 76.

    Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity-ecosystem function experiments. J. Vegetation Sci. 25, 248–261 (2014).

    • Article
    • Google Scholar
  • 77.

    Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).

    • Article
    • Google Scholar
  • 78.

    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).

  • 79.

    Green, W. USDA PLANTS Compilation, version 1, 09-02-02. NRCS: The PLANTS Database (2009).

  • 80.

    Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. N. Phytologist 168, 377–385 (2005).

  • 81.

    Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany 91, 176–181 (2013).

    • Article
    • Google Scholar
  • 82.

    Hickler, T. Plant functional types and community characteristics along environmental gradients on Oland’s Great Alvar (Sweden). (University of Lund, Sweden, 1999).

  • 83.

    Fagúndez, J. & Izco, J. Seed morphology of two distinct european species of Erica L. (Ericaceae). Acta Botanica Malacit. 33, 1–9 (2008).

    • Google Scholar
  • 84.

    Kühn, I., Durka, W. & Klotz, S. BiolFlor-A new plant-trait database as a tool for plant invasion ecology. Diversity Distrib. 10, 363–365 (2004).

    • Article
    • Google Scholar
  • 85.

    Bahn, M. et al. Leaf photosynthesis, nitrogen contents and specific leaf area of grassland species in mountain ecosystems under different land use. in Land use changes in European mountain ecosystems: ECOMONT concepts and results. Blackwell, Vienna, Austria 247–255 (1999).

  • 86.

    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).

  • 87.

    Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21–30 (2006).

    • Article
    • Google Scholar
  • 88.

    Kerkoff, A., Fagan, W. F., James, J., Elser & Brian, J. Enquist. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Naturalist 168, E103–E122 (2006).

    • Article
    • Google Scholar
  • 89.

    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).

    • Article
    • Google Scholar
  • 90.

    Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96, 1266–1274 (2008).

    • Article
    • Google Scholar
  • 91.

    Louault, F., Pillar, V. D., Aufrère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J. Vegetation Sci. 16, 151–160 (2005).

    • Article
    • Google Scholar
  • 92.

    Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).

  • 93.

    Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309 (2009).

    • Article
    • Google Scholar
  • 94.

    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. N. Phytologist 149, 247–264 (2001).

    • Article
    • Google Scholar
  • 95.

    Mencuccini, M. The ecological significance of long-distance water transport: Short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).

    • Article
    • Google Scholar
  • 96.

    Bakker, C., Rodenburg, J. & Van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. in. Plant Soil 275, 111–122 (2005).

  • 97.

    Meziane, D. & Shipley, B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell Environ. 22, 447–459 (1999).

    • Article
    • Google Scholar
  • 98.

    Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465 (2011).

  • 99.

    Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).

    • Article
    • Google Scholar
  • 100.

    Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–148 (2003).

    • Article
    • Google Scholar
  • 101.

    Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011).

  • 102.

    Ordoñez, J. C. et al. Plant strategies in relation to resource supply in mesic to wet environments: does theory mirror nature? Am. Naturalist 175, 225–239 (2010).

    • Article
    • Google Scholar
  • 103.

    Paula, S. et al. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90, 46470 (2009).

    • Article
    • Google Scholar
  • 104.

    Peco, B., De Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic Appl. Ecol. 6, 175–183 (2005).

    • Article
    • Google Scholar
  • 105.

    Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: A test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004).

    • Article
    • Google Scholar
  • 106.

    Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012).

  • 107.

    Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecol. 185, 19–28 (2006).

    • Article
    • Google Scholar
  • 108.

    Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).

    • Article
    • Google Scholar
  • 109.

    Pierce, S., Ceriani, R. M., DE Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosyst. 141, 337–343 (2007).

    • Article
    • Google Scholar
  • 110.

    Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).

    • Article
    • Google Scholar
  • 111.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. N. Phytologist 182, 565–588 (2009).

    • Article
    • Google Scholar
  • 112.

    Poschlod, P., Kleyer, M., Jackel, A.-K., Dannemann, A. & Tackenberg, O. BIOPOP—A database of plant traits and internet application for nature conservation. Folia Geobotanica 38, 263–271 (2003).

    • Article
    • Google Scholar
  • 113.

    Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. N. Phytologist 190, 169–180 (2011).

  • 114.

    Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. N. Phytologist 170, 807–818 (2006).

    • Article
    • Google Scholar
  • 115.

    Price, C. A. & Enquist, B. J. Scaling mass and morphology in leaves: an extension of the wbe model. Ecology 88, 1132–1141 (2007).

  • 116.

    Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. N. Phytologist 143, 131–142 (1999).

    • Article
    • Google Scholar
  • 117.

    Quested, H. M. et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221 (2003).

    • Article
    • Google Scholar
  • 118.

    Blonder, B. et al. The leaf-area shrinkage effect can bias paleoclimate and ecology research. Am. J. Bot. 99, 1756–1763 (2012).

  • 119.

    Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).

  • 120.

    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).

  • 121.

    Kew, R. B. G. Seed information database (SID). Version 7.1. http://www.kew.org/data/sid(2008).

  • 122.

    Scherer-Lorenzen, M., Schulze, E. D., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). Perspect. Plant Ecol. Evol. Syst. 9, 53–70 (2007).

    • Article
    • Google Scholar
  • 123.

    Schweingruber, F. & Landolt, W. The xylem database. Swiss Federal Research Institute WSL http://www.wsl.ch/dendropro/xylemdb/ (2005).

  • 124.

    Sheremet’ev, S. N. Herbs on the soil moisture gradient (water relations and the structural-functional organization). (KMK, Moscow, 2005).

  • 125.

    Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct. Ecol. 16, 682–689 (2002).

    • Article
    • Google Scholar
  • 126.

    Shipley, B. Structured interspecific determinants of SLA in 34 species of herbaceous angiosperms. Funct. Ecol. 9, 312–319 (1995).

    • Article
    • Google Scholar
  • 127.

    Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Ecoscience 7, 183–194 (2000).

    • Article
    • Google Scholar
  • 128.

    Shipley, B. & Parent, M. Germination responses of 64 wetland species in relation to seed size, minimum Time to reproduction and seedling relative growth rate. Source Funct. Ecol. 5, 111–118 (1991).

    • Article
    • Google Scholar
  • 129.

    Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J. Ecol. 101, 981–989 (2013).

    • Article
    • Google Scholar
  • 130.

    Shipley, B. & Vu, T. T. Dry matter content as a measure of dry matter concentration in plants and their parts. N. Phytologist 153, 359–364 (2002).

    • Article
    • Google Scholar
  • 131.

    Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).

    • Article
    • Google Scholar
  • 132.

    Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, 48 (2011).

    • Article
    • Google Scholar
  • 133.

    Van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204 (2008).

  • 134.

    Minden, V. & Kleyer, M. Testing the effect-response framework: key response and effect traits determining above-ground biomass of salt marshes. J. Vegetation Sci. 22, 387–401 (2011).

    • Article
    • Google Scholar
  • 135.

    Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait-environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evolution Syst. 14, 183–192 (2012).

    • Article
    • Google Scholar
  • 136.

    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves. (2012).

  • 137.

    Vile, D. Significations fonctionnelle et ecologique des traits des especes vegetales: exemple dans une succession post-cultural mediterraneenne et generalisations. (2005).

  • 138.

    Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21, 376–382 (2012).

    • Article
    • Google Scholar
  • 139.

    Wirth, C. & Lichstein, J. The imprint of species turnover on old-growth forest carbon balances-Insights from a trait-based model of forest dynamics. Old Growth Forest. SE-5 207, 81–113 (2009).

    • Google Scholar
  • 140.

    Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, 1–16 (2011).

    • Article
    • Google Scholar
  • 141.

    Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2013).

    • Article
    • Google Scholar
  • 142.

    Medlyn, B. E. et al. Effects of elevated CO2 on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22, 1475–1495 (1999).

  • 143.

    Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S. & Golicher, D. J. Taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).

    • Article
    • Google Scholar
  • 144.

    McIlroy, D., Brownrigg, R., Minka, T. P. & Bivand, R. mapproj: Map Projections. 1–2 (2014).

  • 145.

    Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: Applications of the Xylem Database to vegetation science. J. Vegetation Sci. 25, 967–977 (2014).

    • Article
    • Google Scholar
  • 146.

    Chapin, F. S. III, Matson, P. A. & Vitousek, P. Principles of terrestrial ecosystem ecology. Springe. Sci. Bus. Media. https://doi.org/10.5860/choice.40-2771 (2011).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Lighting recycling in Australia: A complete guide to recycling lighting waste

    Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery