in

Global trends in mangrove forest fragmentation

  • 1.

    Koch, E. W. et al. Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).

    • Article
    • Google Scholar
  • 2.

    Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 89, 155–185 (2008).

    • Article
    • Google Scholar
  • 3.

    Ouyang, X., Lee, S. Y., Connolly, R. M. & Kainz, M. J. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Sci. Rep. 8, 3035 (2018).

  • 4.

    Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. 116, 12232–12237 (2019).

  • 5.

    Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).

  • 6.

    Adame, M. F. et al. The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conserv. Lett. 11, e12445 (2018).

    • Article
    • Google Scholar
  • 7.

    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

  • 8.

    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

  • 9.

    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).

    • Article
    • Google Scholar
  • 10.

    Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    • Article
    • Google Scholar
  • 11.

    Friess, D. A. et al. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).

    • Article
    • Google Scholar
  • 12.

    Mejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R. & Hamilton, S. E. A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuar. Coast. Shelf Sci. 212, 233–240 (2018).

  • 13.

    Curnick, D. J. et al. The value of small mangrove patches. Science (80-.). 363, 239–239 (2019).

  • 14.

    Binks, R. M. et al. Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Divers. Distrib. 25, 298–309 (2019).

    • Article
    • Google Scholar
  • 15.

    Hasan, S., Triest, L., Afrose, S. & De Ryck, D. J. R. Migrant pool model of dispersal explains strong connectivity of Avicennia officinalis within Sundarban mangrove areas: Effect of fragmentation and replantation. Estuar. Coast. Shelf Sci. 214, 38–47 (2018).

  • 16.

    Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M. & Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. 116, 915–922 (2019).

  • 17.

    Herse, M. R., With, K. A. & Boyle, W. A. The importance of core habitat for a threatened species in changing landscapes. J. Appl. Ecol. 55, 2241–2252 (2018).

    • Article
    • Google Scholar
  • 18.

    Riitters, K. H. & Wickham, J. D. Decline of forest interior conditions in the conterminous United States. Sci. Rep. 2, 653 (2012).

  • 19.

    Bregman, T. P., Sekercioglu, C. H. & Tobias, J. A. Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biol. Conserv. 169, 372–383 (2014).

    • Article
    • Google Scholar
  • 20.

    Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5, 941–945 (2015).

  • 21.

    Jacobson, A. P., Riggio, J., M. Tait, A. & Baillie, E. M. J. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 9, 14179 (2019).

  • 22.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

  • 23.

    Dahdouh-Guebas, F. et al. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 15, 1337–1338 (2005).

  • 24.

    Horstman, E. M., Dohmen-Janssen, C. M., Bouma, T. J. & Hulscher, S. J. M. H. Flow routing in mangrove forests: field data obtained in Trang, Thailand. in NCK-days 2012: Crossing borders in coastal research: jubilee conference proceedings 147–151, https://doi.org/10.3990/2.186 (University of Twente, Department of Water Engineering & Management, 2012).

  • 25.

    Thampanya, U., Vermaat, J. E., Sinsakul, S. & Panapitukkul, N. Coastal erosion and mangrove progradation of Southern Thailand. Estuar. Coast. Shelf Sci. 68, 75–85 (2006).

  • 26.

    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).

    • Article
    • Google Scholar
  • 27.

    Li, M. S., Mao, L. J., Shen, W. J., Liu, S. Q. & Wei, A. S. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar. Coast. Shelf Sci. 130, 111–120 (2013).

  • 28.

    Tran, L. X. & Fischer, A. Spatiotemporal changes and fragmentation of mangroves and its effects on fish diversity in Ca Mau Province (Vietnam). J. Coast. Conserv. 21, 355–368 (2017).

    • Article
    • Google Scholar
  • 29.

    Atwood, T. B. et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Chang. 5, 1038–1045 (2015).

  • 30.

    McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).

  • 31.

    Wang, X., Blanchet, F. G. & Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 5, 634–646 (2014).

    • Article
    • Google Scholar
  • 32.

    Martin, T. S. H. et al. Habitat proximity exerts opposing effects on key ecological functions. Landsc. Ecol. 33, 1273–1286 (2018).

    • Article
    • Google Scholar
  • 33.

    Polidoro, B. A. et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS One 5, e10095 (2010).

  • 34.

    Webb, E. L. et al. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Chang. 24, 321–333 (2014).

    • Article
    • Google Scholar
  • 35.

    Rahman, A. F., Dragoni, D., Didan, K., Barreto-Munoz, A. & Hutabarat, J. A. Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity MODIS data. Remote Sens. Environ. 130, 96–107 (2013).

  • 36.

    Proisy, C. et al. Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia. Mar. Pollut. Bull. 131, 61–71 (2018).

  • 37.

    Liao, J., Zhen, J., Zhang, L. & Metternicht, G. Understanding Dynamics of Mangrove Forest on Protected Areas of Hainan Island, China: 30 Years of Evidence from Remote Sensing. Sustainability 11, 5356 (2019).

    • Article
    • Google Scholar
  • 38.

    Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A. & Krauss, K. W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Chang. Biol. 20, 147–157 (2014).

  • 39.

    Proisy, C. et al. Mud bank colonization by opportunistic mangroves: A case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).

  • 40.

    Bosire, J. O. et al. Functionality of restored mangroves: A review. Aquat. Bot. 89, 251–259 (2008).

    • Article
    • Google Scholar
  • 41.

    Bunting, P. et al. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 10, 1669 (2018).

  • 42.

    Hansen, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science (80-.). 342, 850–853 (2013).

  • 43.

    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    • Article
    • Google Scholar
  • 44.

    Heumann, B. W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr. Earth Environ. 35, 87–108 (2011).

    • Article
    • Google Scholar
  • 45.

    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016).

  • 46.

    Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240–244 (2018).

  • 47.

    R Core Team. R: A Language and Environment for Statistical Computing. (2018).

  • 48.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2017).

  • 49.

    Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2017).

  • 50.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. (2017).

  • 51.

    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied spatial data analysis with R, Second edition. (Springer, NY, 2013).

  • 52.

    McGarigal, K., Cushman, S. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. (2012).

  • 53.

    Spalding, M. D. et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. Bioscience 57, 573–583 (2007).

    • Article
    • Google Scholar
  • 54.

    Pebesma, E. sf: Simple Features for R. (2018).

  • 55.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).


  • Source: Ecology - nature.com

    Engineers develop precision injection system for plants

    Understanding how fluids heat or cool surfaces