in

GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies

  • 1.

    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature540, 104–108 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nature Rev. Microbiol.14, 434–447 (2016).

    CAS  Google Scholar 

  • 3.

    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature528, 69–76 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science346, 1256688 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature560, 233–237 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Commun.10, 2369 (2019).

    ADS  Google Scholar 

  • 7.

    Nilsson, R. H. et al. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Rev. Microbiol.17, 95–109 (2019).

    CAS  Google Scholar 

  • 8.

    Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Commun.10, 5142 (2019).

    ADS  Google Scholar 

  • 9.

    Vlk, L. et al. Early successional ectomycorrhizal fungi are more likely to naturalize outside their native range than other ectomycorrhizal fungi. New Phytol., https://doi.org/10.1111/nph.16557 (2020).

  • 10.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature551, 457–463 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA.109, 6241–6246 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res.47, D259–D264 (2019).

    CAS  PubMed  Google Scholar 

  • 13.

    Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Meth. Ecol. Evol.4, 914–919 (2013).

    Google Scholar 

  • 14.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990).

    CAS  Google Scholar 

  • 15.

    Karger, D. N. et al. Data Descriptor: Climatologies at high resolution for the earth’s land surface areas. Scientific Data4, 170122 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.37, 4302–4315 (2017).

    Google Scholar 

  • 17.

    Baldrian, P. et al. GlobalFungi: Global database of fungal records from high-throughput-sequencing metabarcoding studies. figshare https://doi.org/10.6084/m9.figshare.c.4915392 (2020).

  • 18.

    Anslan, S. et al. Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. Mycokeys39, 29–40 (2018).

    Google Scholar 

  • 19.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP001058 (2010).

  • 20.

    Jumpponen, A. & Jones, K. L. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol.186, 496–513 (2010).

    CAS  PubMed  Google Scholar 

  • 21.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP001175 (2010).

  • 22.

    Jumpponen, A., Jones, K. L., Mattox, J. D. & Yaege, C. Massively parallel 454-sequencing of fungal communities in Quercus spp ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol. Ecol.19, 41–53 (2010).

    PubMed  Google Scholar 

  • 23.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP006078 (2011).

  • 24.

    Mello, A. et al. ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia103, 1184–1193 (2011).

    CAS  PubMed  Google Scholar 

  • 25.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP012868 (2012).

  • 26.

    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol.82, 666–677 (2012).

    CAS  PubMed  Google Scholar 

  • 27.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP013695 (2012).

  • 28.

    Zimmerman, N. B. & Vitousek, P. M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc. Natl. Acad. Sci. USA109, 13022–13027 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP013944 (2016).

  • 30.

    Uroz, S. et al. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep.6, 27756 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP015735 (2015).

  • 32.

    Gao, C. et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol.205, 771–785 (2015).

    PubMed  Google Scholar 

  • 33.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP016090 (2015).

  • 34.

    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol.205, 1525–1536 (2015).

    CAS  PubMed  Google Scholar 

  • 35.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP026207 (2014).

  • 36.

    De Beeck, M. O. et al. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One9, e97629 (2014).

    ADS  Google Scholar 

  • 37.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP028404 (2015).

  • 38.

    De Beeck, M. O. et al. Impact of metal pollution on fungal diversity and community structures. Environ. Microbiol.17, 2035–2047 (2015).

    Google Scholar 

  • 39.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP033719 (2015).

  • 40.

    Chaput, D. L., Hansel, C. M., Burgos, W. D. & Santelli, C. M. Profiling microbial communities in manganese remediation systems treating coal mine drainage. Appl. Environ. Microbiol.81, 2189–2198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP035356 (2015).

  • 42.

    Sterkenburg, E., Bahr, A., Brandström Durling, M., Clemmensen, K. E. & Lindahl, B. D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol.207, 1145–1158 (2015).

    PubMed  Google Scholar 

  • 43.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP040314 (2014).

  • 44.

    Talbot, J. M. et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl. Acad. Sci. USA.111, 6341–6346 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP040786 (2015).

  • 46.

    Saravesi, K. et al. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb. Ecol.69, 788–797 (2015).

    CAS  PubMed  Google Scholar 

  • 47.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP041347 (2015).

  • 48.

    Liu, J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem.83, 29–39 (2015).

    CAS  Google Scholar 

  • 49.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP043106 (2015).

  • 50.

    Hoppe, B. et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers.77, 367–379 (2015).

    Google Scholar 

  • 51.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP043706 (2017).

  • 52.

    Hiiesalu, I., Bahram, M. & Tedersoo, L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol.26, 4846–4858 (2017).

    PubMed  Google Scholar 

  • 53.

    Tedersoo, L. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J.10, 346–362 (2016).

    CAS  PubMed  Google Scholar 

  • 54.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP043982 (2015).

  • 55.

    Jarvis, S. G., Woodward, S. & Taylor, A. F. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol.206, 1145–1155 (2015).

    CAS  PubMed  Google Scholar 

  • 56.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP044665 (2016).

  • 57.

    Nacke, H. et al. Fine spatial scale variation of soil microbial communities under European Beech and Norway Spruce. Front. Microbiol.7, 2067 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045166 (2015).

  • 59.

    Rincón, A. et al. Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ. Microbiol.17, 3009–3024 (2015).

    PubMed  Google Scholar 

  • 60.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045587 (2016).

  • 61.

    Bahram, M. et al. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J.10, 885–896 (2016).

    PubMed  Google Scholar 

  • 62.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045746 (2014).

  • 63.

    Walker, D. M. et al. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest. Ecol. Evol.4, 4106–4116 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP045933 (2015).

  • 65.

    Zhang, T., Wei, X. L., Zhang, Y. Q., Liu, H. Y. & Yu, L. Y. Diversity and distribution of lichen-associated fungi in the Ny-Alesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci. Rep.5, 14850 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP046049 (2016).

  • 67.

    Oh, S. Y., Fong, J. J., Park, M. S. & Lim, Y. W. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS One11, e0168573 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP048036 (2016).

  • 69.

    Yang, T. et al. Carbon constrains fungal endophyte assemblages along the timberline. Environ. Microbiol.18, 2455–2469 (2016).

    CAS  PubMed  Google Scholar 

  • 70.

    Yang, T., Sun, H., Shen, C. & Chu, H. Fungal assemblages in different habitats in an Erman’s Birch forest. Front. Microbiol.7, 1368 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP048856 (2015).

  • 72.

    Elliott, D. R., Caporn, S. J., Nwaishi, F., Nilsson, R. H. & Sen, R. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. PLoS One10, e0124726 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP049544 (2015).

  • 74.

    Goldmann, K., Schöning, I., Buscot, F. & Wubet, T. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front. Microbiol.6, 1300 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP051033 (2016).

  • 76.

    Roy-Bolduc, A., Laliberté, E., Boudreau, S. & Hijri, M. Strong linkage between plant and soil fungal communities along a successional coastal dune system. FEMS Microbiol. Ecol.92, fiw156 (2016).

    PubMed  Google Scholar 

  • 77.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP052222 (2017).

  • 78.

    Fernández-Martínez, M. A. et al. Microbial succession dynamics along glacier forefield chronosequences in Tierra del Fuego (Chile). Polar Biol.40, 1939–1957 (2017).

    Google Scholar 

  • 79.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP052716 (2015).

  • 80.

    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA112, 10967–10972 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 81.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP055957 (2015).

  • 82.

    Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Mycokeys10, 1–43 (2015).

    Google Scholar 

  • 83.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP057433 (2016).

  • 84.

    Wang, W., Zhai, Y., Cao, L., Tan, H. & Zhang, R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol. Res.188, 1–8 (2016).

    PubMed  Google Scholar 

  • 85.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP057541 (2016).

  • 86.

    Waring, B. G., Adams, R., Branco, S. & Powers, J. S. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytol.209, 845–854 (2016).

    CAS  PubMed  Google Scholar 

  • 87.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP058508 (2016).

  • 88.

    Glassman, S. I., Levine, C. R., DiRocco, A. M., Battles, J. J. & Bruns, T. D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J.10, 1228–1239 (2016).

    PubMed  Google Scholar 

  • 89.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP058555 (2016).

  • 90.

    De Gannes, V. et al. Microbial community structure and function of soil following ecosystem conversion from native forests to Teak plantation forests. Front. Microbiol.7, 1976 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 91.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP058851 (2018).

  • 92.

    Bach, E. M., Williams, R. J., Hargreaves, S. K., Yang, F. & Hofmockel, K. S. Greatest soil microbial diversity found in micro-habitats. Soil Biol. Biochem.118, 217–226 (2018).

    CAS  Google Scholar 

  • 93.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP059280 (2016).

  • 94.

    Roy‐Bolduc, A., Laliberté, E. & Hijri, M. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecol. Evol.6, 349–362 (2016).

    PubMed  Google Scholar 

  • 95.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP060838 (2016).

  • 96.

    He, F. et al. Changes in composition and diversity of fungal communities along Quercus mongolica forests developments in Northeast China. Appl. Soil Ecol.100, 162–171 (2016).

    ADS  Google Scholar 

  • 97.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP061179 (2016).

  • 98.

    Valverde, A. et al. Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS One11, e0153353 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 99.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP061305 (2017).

  • 100.

    Yao, F. et al. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. Front. Microbiol.8, 2071 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 101.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP061904 (2015).

  • 102.

    Veach, A. M., Dodds, W. K. & Jumpponen, A. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiol. Ecol.91, fiv109 (2015).

    PubMed  Google Scholar 

  • 103.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP062647 (2016).

  • 104.

    Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Change6, 182 (2016).

    ADS  Google Scholar 

  • 105.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP063711 (2017).

  • 106.

    Poosakkannu, A., Nissinen, R., Männistö, M. & Kytöviita, M. M. Microbial community composition but not diversity changes along succession in arctic sand dunes. Environ. Microbiol.19, 698–709 (2017).

    CAS  PubMed  Google Scholar 

  • 107.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP064158 (2017).

  • 108.

    Tian, J. et al. Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China. J. Soil. Sediment.17, 2856–2865 (2017).

    Google Scholar 

  • 109.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP065817 (2017).

  • 110.

    Zhang, W., Lu, Z., Yang, K. & Zhu, J. Impacts of conversion from secondary forests to larch plantations on the structure and function of microbial communities. Appl. Soil Ecol.111, 73–83 (2017).

    Google Scholar 

  • 111.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP066030 (2016).

  • 112.

    Porter, T. M., Shokralla, S., Baird, D., Golding, G. B. & Hajibabaei, M. Ribosomal DNA and plastid markers used to sample fungal and plant communities from wetland soils reveals complementary biotas. PLoS One11, e0142759 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 113.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP066284 (2017).

  • 114.

    Wang, M. et al. Influence of Peanut cultivars and environmental conditions on the diversity and community composition of Pod Rot soil fungi in China. Mycobiology45, 392–400 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 115.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP066331 (2017).

  • 116.

    Delgado‐Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett.20, 1295–1305 (2017).

    PubMed  Google Scholar 

  • 117.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP067301 (2017).

  • 118.

    Cross, H. et al. Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus. New Phytol.213, 1405–1417 (2017).

    CAS  PubMed  Google Scholar 

  • 119.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP067367 (2016).

  • 120.

    Zhang, T., Wang, N. F., Liu, H. Y., Zhang, Y. Q. & Yu, L. Y. Soil pH is a key determinant of soil fungal community composition in the Ny-Alesund region, Svalbard (High Arctic). Front. Microbiol.7, 227 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 121.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068514 (2016).

  • 122.

    Gehring, C. A. et al. Cheatgrass invasion alters the abundance and composition of dark septate fungal communities in sagebrush steppe. Botany94, 481–491 (2016).

    Google Scholar 

  • 123.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068608 (2016).

  • 124.

    Li, Y. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ.222, 213–222 (2016).

    Google Scholar 

  • 125.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068620 (2016).

  • 126.

    Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun.7, 12083 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 127.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP068654 (2016).

  • 128.

    Cox, F., Newsham, K. K., Bol, R., Dungait, J. A. & Robinson, C. H. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol. Lett.19, 528–536 (2016).

    PubMed  Google Scholar 

  • 129.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP069065 (2017).

  • 130.

    Bergottini, V. M. et al. Exploring the diversity of the root-associated microbiome of Ilex paraguariensis St. Hil. (Yerba Mate). Appl. Soil Ecol.109, 23–31 (2017).

    Google Scholar 

  • 131.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP069742 (2017).

  • 132.

    Moussa, T. A., Al-Zahrani, H. S., Almaghrabi, O. A., Abdelmoneim, T. S. & Fuller, M. P. Comparative metagenomics approaches to characterize the soil fungal communities of western coastal region, Saudi Arabia. PLoS One12, e0185096 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 133.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP070568 (2016).

  • 134.

    Goldmann, K. et al. Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci. Rep.11, 31439 (2016).

    ADS  Google Scholar 

  • 135.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP073070 (2016).

  • 136.

    Liu, C. et al. The influence of soil properties on the size and structure of bacterial and fungal communities along a paddy soil chronosequence. Eur. J. Soil Biol.76, 9–18 (2016).

    Google Scholar 

  • 137.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP073265 (2017).

  • 138.

    Smith, M. E. et al. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytol.215, 443–453 (2017).

    CAS  PubMed  Google Scholar 

  • 139.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP074055 (2016).

  • 140.

    Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience5, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 141.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP074496 (2016).

  • 142.

    Vannette, R. L., Leopold, D. R. & Fukami, T. Forest area and connectivity influence root-associated fungal communities in a fragmented landscape. Ecology97, 2374–2383 (2016).

    PubMed  Google Scholar 

  • 143.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP075989 (2017).

  • 144.

    Zhou, X. et al. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L. J. Basic Microbiol.57, 1055–1064 (2017).

    CAS  PubMed  Google Scholar 

  • 145.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP079403 (2017).

  • 146.

    Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol.26, 6960–6973 (2017).

    CAS  PubMed  Google Scholar 

  • 147.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP079521 (2018).

  • 148.

    Cline, L. C., Schilling, J. S., Menke, J., Groenhof, E. & Kennedy, P. G. Ecological and functional effects of fungal endophytes on wood decomposition. Funct. Ecol.32, 181–191 (2018).

    Google Scholar 

  • 149.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP080210 (2016).

  • 150.

    Johansen, R. B. et al. A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities. Fungal Ecol.23, 141–155 (2016).

    Google Scholar 

  • 151.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP080428 (2017).

  • 152.

    Zhang, S., Chen, X., Zhong, Q., Huang, Z. & Bai, Z. Relations among epiphytic microbial communities from soil, leaves and grapes of the grapevine. Front. Life Sci.10, 73–83 (2017).

    CAS  Google Scholar 

  • 153.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP080680 (2017).

  • 154.

    Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Change Biol.23, 1598–1609 (2017).

    ADS  Google Scholar 

  • 155.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP082472 (2017).

  • 156.

    Zhang, Z. et al. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China. PLoS One12, e0187575 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 157.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP082976 (2017).

  • 158.

    Gomes, S. I., Merckx, V. S. & Saavedra, S. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap. Ecol. Evol.7, 3623–3630 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 159.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP083394 (2017).

  • 160.

    Zhou, X. et al. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities. Sci. Rep.7, 41502 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 161.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP083434 (2017).

  • 162.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP083901 (2017).

  • 163.

    Gomes, S. I., Aguirre‐Gutiérrez, J., Bidartondo, M. I. & Merckx, V. S. Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. New Phytol.213, 1418–1427 (2017).

    CAS  PubMed  Google Scholar 

  • 164.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP087715 (2017).

  • 165.

    Tian, H. et al. Changes in soil microbial communities after 10 years of winter wheat cultivation versus fallow in an organic-poor soil in the Loess Plateau of China. PLoS One12, e0184223 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 166.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090261 (2016).

  • 167.

    Gourmelon, V. et al. Environmental and geographical factors structure soil microbial diversity in New Caledonian ultramafic substrates: a metagenomic approach. PLoS One11, e0167405 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 168.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090335 (2017).

  • 169.

    Younginger, B. S. & Ballhorn, D. J. Fungal endophyte communities in the temperate fern Polystichum munitum show early colonization and extensive temporal turnover. Am. J. Bot.104, 1188–1194 (2017).

    CAS  PubMed  Google Scholar 

  • 170.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090490 (2017).

  • 171.

    Kamutando, C. N. et al. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci. Rep.7, 6472 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 172.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP090651 (2017).

  • 173.

    Anthony, M. A., Frey, S. D. & Stinson, K. A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere8, e01951 (2017).

    Google Scholar 

  • 174.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP091741 (2017).

  • 175.

    Ge, Z. W., Brenneman, T., Bonito, G. & Smith, M. E. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil418, 493–505 (2017).

    CAS  Google Scholar 

  • 176.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP091855 (2018).

  • 177.

    Mirmajlessi, S. M. et al. Survey of soil fungal communities in Strawberry fields by Illumina amplicon sequencing. Eurasian Soil Sci.51, 682–691 (2018).

    ADS  CAS  Google Scholar 

  • 178.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP091867 (2016).

  • 179.

    Harrison, J. G., Forister, M. L., Parchman, T. L. & Koch, G. W. Vertical stratification of the foliar fungal community in the world’s tallest trees. Am. J. Bot.103, 2087–2095 (2016).

    PubMed  Google Scholar 

  • 180.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP092609 (2019).

  • 181.

    Semenova‐Nelsen, T. A., Platt, W. J., Patterson, T. R., Huffman, J. & Sikes, B. A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol.224, 916–927 (2019).

    PubMed  Google Scholar 

  • 182.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP092777 (2017).

  • 183.

    Dean, S. L. et al. A study of Glycine max (soybean) fungal communities under different agricultural practices. Plant Gene11, 8–16 (2017).

    ADS  Google Scholar 

  • 184.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP093592 (2017).

  • 185.

    Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E. & Lindahl, B. D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J.11, 863–874 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 186.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP093928 (2017).

  • 187.

    Tian, J. et al. Ecological succession pattern of fungal community in soil along a retreating glacier. Front. Microbiol.8, 1028 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 188.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP094708 (2017).

  • 189.

    Oono, R., Rasmussen, A. & Lefèvre, E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environ. Microbiol.19, 2794–2805 (2017).

    CAS  PubMed  Google Scholar 

  • 190.

    Oono, R. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing. PLoS One12, e0189796 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 191.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP097883 (2017).

  • 192.

    Marín, C. et al. Functional land-use change effects on soil fungal communities in Chilean temperate rainforests. J. Soil Sci. Plant Nut.17, 985–1002 (2017).

    Google Scholar 

  • 193.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP101553 (2017).

  • 194.

    Siles, J. A. & Margesin, R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci. Rep.7, 2204 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 195.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP101605 (2018).

  • 196.

    Kazartsev, I., Shorohova, E., Kapitsa, E. & Kushnevskaya, H. Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecol.33, 1–12 (2018).

    Google Scholar 

  • 197.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP102378 (2017).

  • 198.

    Peay, K. G. et al. Convergence and contrast in the community structure of bacteria, fungi and archaea along a tropical elevation-climate gradient. FEMS Microbiol. Ecol.93, fix045 (2017).

    Google Scholar 

  • 199.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP102417 (2018).

  • 200.

    Coleine, C. et al. Antarctic cryptoendolithic fungal communities are highly adapted and dominated by Lecanoromycetes and Dothideomycetes. Front. Microbiol.9, 1392 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 201.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP102775 (2018).

  • 202.

    Park, M. S. et al. Diversity of fungi associated with roots of Calanthe orchid species in Korea. J. Microbiol.56, 49–55 (2018).

    PubMed  Google Scholar 

  • 203.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP106137 (2018).

  • 204.

    Glynou, K., Nam, B., Thines, M. & Maciá‐Vicente, J. G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol.217, 1190–1202 (2018).

    PubMed  Google Scholar 

  • 205.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP106774 (2018).

  • 206.

    Saitta, A., Anslan, S., Bahram, M., Brocca, L. & Tedersoo, L. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza28, 39–47 (2018).

    PubMed  Google Scholar 

  • 207.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP107174 (2017).

  • 208.

    Almario, J. et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl. Acad. Sci. USA.114, E9403–E9412 (2017).

    CAS  PubMed  Google Scholar 

  • 209.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP107743 (2017).

  • 210.

    Fernández‐Mendoza, F., Fleischhacker, A., Kopun, T., Grube, M. & Muggia, L. ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Mol. Ecol.26, 4811–4830 (2017).

    PubMed  Google Scholar 

  • 211.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP109164 (2017).

  • 212.

    Varenius, K., Lindahl, B. D. & Dahlberg, A. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests. FEMS Microbiol. Ecol.93, fix105 (2017).

    Google Scholar 

  • 213.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP109773 (2017).

  • 214.

    He, D. et al. Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biol. Biochem.115, 499–510 (2017).

    CAS  Google Scholar 

  • 215.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP110522 (2017).

  • 216.

    Mendoza, J. R., Kok, C. R., Stratton, J., Bianchini, A. & Hallen-Adams, H. E. Understanding the mycobiota of maize from the highlands of Guatemala, and implications for maize quality and safety. Crop Prot.101, 5–11 (2017).

    Google Scholar 

  • 217.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP110810 (2017).

  • 218.

    Miura, T., Sánchez, R., Castañeda, L. E., Godoy, K. & Barbosa, O. Is microbial terroir related to geographic distance between vineyards? Environ. Microbiol. Rep.9, 742–749 (2017).

    CAS  PubMed  Google Scholar 

  • 219.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP113348 (2018).

  • 220.

    Zhang, J. et al. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ.644, 791–800 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 221.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP114697 (2017).

  • 222.

    Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S. & Paulitz, T. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems. PLoS One12, e0184611 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 223.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP114821 (2018).

  • 224.

    Ren, C. et al. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci. Total Environ.610, 750–758 (2018).

    ADS  PubMed  Google Scholar 

  • 225.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP115350 (2018).

  • 226.

    Schneider-Maunoury, L. et al. Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol.31, 59–68 (2018).

    Google Scholar 

  • 227.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP115464 (2018).

  • 228.

    Sapkota, R. & Nicolaisen, M. Cropping history shapes fungal, oomycete and nematode communities in arable soils and affects cavity spot in carrot. Agric. Ecosyst. Environ.257, 120–131 (2018).

    Google Scholar 

  • 229.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP115599 (2018).

  • 230.

    Schroeder, J. W. et al. Community composition and diversity of Neotropical root‐associated fungi in common and rare trees. Biotropica50, 694–703 (2018).

    Google Scholar 

  • 231.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP117302 (2018).

  • 232.

    Fan, K., Weisenhorn, P., Gilbert, J. A. & Chu, H. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem.125, 251–260 (2018).

    CAS  Google Scholar 

  • 233.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP118875 (2018).

  • 234.

    Montagna, M. et al. Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Mol. Ecol.27, 3671–3685 (2018).

    PubMed  Google Scholar 

  • 235.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP118960 (2018).

  • 236.

    Schön, M. E., Nieselt, K. & Garnica, S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS One13, e0208493 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 237.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP119174 (2017).

  • 238.

    Thiem, D., Piernik, A. & Hrynkiewicz, K. Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland. Symbiosis75, 17–28 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 239.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP125864 (2016).

  • 240.

    Barnes, C. J., Maldonado, C., Frøslev, T. G., Antonelli, A. & Rønsted, N. Unexpectedly high beta-diversity of root-associated fungal communities in the Bolivian Andes. Front. Microbiol.7, 1377 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 241.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP132277 (2018).

  • 242.

    Schlatter, D. C., Kahl, K., Carlson, B., Huggins, D. R. & Paulitz, T. Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system. FEMS Microbiol. Ecol.94, fiy098 (2018).

    CAS  Google Scholar 

  • 243.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP132591 (2018).

  • 244.

    Rasmussen, P. U. et al. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytol.220, 1248–1261 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 245.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP132598 (2018).

  • 246.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP136886 (2012).

  • 247.

    Guo, J. et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytol.226, 232–243 (2019).

    PubMed  Google Scholar 

  • 248.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP139483 (2019).

  • 249.

    Song, H. et al. Tropical forest conversion to rubber plantation in southwest China results in lower fungal beta diversity and reduced network complexity. FEMS Microbiol. Ecol.95, fiz092 (2019).

    CAS  PubMed  Google Scholar 

  • 250.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP142723 (2018).

  • 251.

    Rogers, T. J. et al. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere9, e02524 (2018).

    Google Scholar 

  • 252.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP148813 (2018).

  • 253.

    Schlegel, M., Queloz, V. & Sieber, T. N. The endophytic mycobiome of European Ash and Sycamore Maple leaves – geographic patterns, host specificity and influence of Ash Dieback. Front. Microbiol.9, 2345 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 254.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP150527 (2019).

  • 255.

    Truong, C. et al. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. New Phytol.222, 1936–1950 (2019).

    CAS  PubMed  Google Scholar 

  • 256.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP151262 (2018).

  • 257.

    Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome6, 146 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 258.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP153934 (2018).

  • 259.

    Marasco, R. et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome6, 215 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 260.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP160913 (2018).

  • 261.

    Bickford, W. A., Goldberg, D. E., Kowalski, K. P. & Zak, D. R. Root endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes region. Ecosphere9, e02526 (2018).

    Google Scholar 

  • 262.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP161632 (2018).

  • 263.

    Si, P. et al. Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in Northern China. Front. Microbiol.9, 3147 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 264.

    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP195764 (2019).

  • 265.

    Purahong, W., Wu, Y. T., Chen, C. T. & Mapook, A. Characterization of the Castanopsis carlesii deadwood mycobiome by Pacbio sequencing of the full-length fungal nuclear ribosomal internal transcribed spacer (ITS). Front. Microbiol.10, 983 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 266.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP001713 (2014).

  • 267.

    Geml, J. et al. The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS One9, e99852 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 268.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP003251 (2013).

  • 269.

    Schmidt, P. A. et al. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem.65, 128–132 (2013).

    CAS  Google Scholar 

  • 270.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP003790 (2015).

  • 271.

    van der Wal, A., Ottosson, E. & De Boer, W. Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology96, 124–133 (2015).

    PubMed  Google Scholar 

  • 272.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP005177 (2015).

  • 273.

    Muller, L. A. & Hilger, H. H. Insights into the effects of serpentine soil conditions on the community composition of fungal symbionts in the roots of Onosma echioides. Soil Biol. Biochem.81, 1–8 (2015).

    CAS  Google Scholar 

  • 274.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP005905 (2015).

  • 275.

    Sun, H. et al. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microbiol.81, 7869–7880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 276.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP009341 (2015).

  • 277.

    Rajala, T., Tuomivirta, T., Pennanen, T. & Mäkipää, R. Habitat models of wood-inhabiting fungi along a decay gradient of Norway spruce logs. Fungal Ecol.18, 48–55 (2015).

    Google Scholar 

  • 278.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP010027 (2017).

  • 279.

    Purahong, W. et al. Characterization of unexplored deadwood mycobiome in highly diverse subtropical forests using culture-independent molecular technique. Front. Microbiol.8, 574 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 280.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP010084 (2016).

  • 281.

    van der Wal, A., Gunnewiek, P. J. K., Cornelissen, J. H. C., Crowther, T. W. & de Boer, W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere7, e01393 (2016).

    Google Scholar 

  • 282.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP010743 (2016).

  • 283.

    Reese, A. T. et al. Urban stress is associated with variation in microbial species composition-but not richness-in Manhattan. ISME J.10, 751–760 (2016).

    PubMed  Google Scholar 

  • 284.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP011924 (2016).

  • 285.

    Kielak, A. M., Scheublin, T. R., Mendes, L. W., Van Veen, J. A. & Kuramae, E. E. Bacterial community succession in Pine-wood decomposition. Front. Microbiol.7, 231 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 286.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP012017 (2016).

  • 287.

    Santalahti, M., Sun, H., Jumpponen, A., Pennanen, T. & Heinonsalo, J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 92, fiw170 (2016).

  • 288.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP013208 (2016).

  • 289.

    Frey, B. et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol.92, fiw018 (2016).

    PubMed  Google Scholar 

  • 290.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP013987 (2017).

  • 291.

    Wilhelm, R. C. et al. A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting. Sci. Data4, 170092 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 292.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP014227 (2016).

  • 293.

    Lanzén, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep.6, 28257 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 294.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP017480 (2018).

  • 295.

    Purahong, W. et al. Increasing N deposition impacts neither diversity nor functions of deadwood‐inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function. Environ. Microbiol.20, 1693–1710 (2018).

    CAS  PubMed  Google Scholar 

  • 296.

    European Nucleotide Archive, https://identifiers.org/ena.embl:ERP017851 (2017).

  • 297.

    Yang, T. et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol.215, 756–765 (2017).

    CAS  PubMed  Google Scholar 

  • 298.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP017915 (2017).

  • 299.

    Nguyen, D. et al. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods. Sci. Rep.7, 41801 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 300.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP019580 (2017).

  • 301.

    Tu, B. et al. Microbial diversity in chinese temperate steppe: unveiling the most influential environmental drivers. FEMS Microbiol. Ecol.93, fix031 (2017).

    Google Scholar 

  • 302.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP019924 (2017).

  • 303.

    Yang, T. et al. Fungal community assemblages in a high elevation desert environment: absence of dispersal limitation and edaphic effects in surface soil. Soil Biol. Biochem.115, 393–402 (2017).

    CAS  Google Scholar 

  • 304.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP020657 (2017).

  • 305.

    van der Wal, A., Gunnewiek, P. K., de Hollander, M. & de Boer, W. Fungal diversity and potential tree pathogens in decaying logs and stumps. Forest Ecol. Manag.406, 266–273 (2017).

    Google Scholar 

  • 306.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP022511 (2019).

  • 307.

    Alzarhani, A. K. et al. Are drivers of root-associated fungal community structure context specific? ISME J.13, 1330–1344 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 308.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP022742 (2017).

  • 309.

    van der Wal, A., Gunnewiek, P. K. & de Boer, W. Soil-wood interactions: Influence of decaying coniferous and broadleaf logs on composition of soil fungal communities. Fungal Ecol.30, 132–134 (2017).

    Google Scholar 

  • 310.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP023275 (2018).

  • 311.

    Purahong, W. et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: molecular evidence from a large scale deadwood decomposition experiment. Front. Microbiol.9, 2120 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 312.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP023718 (2018).

  • 313.

    Sun, R. et al. Tillage changes vertical distribution of soil bacterial and fungal communities. Front. Microbiol.9, 699 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 314.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP023855 (2018).

  • 315.

    Santalahti, M. et al. Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in finnish lapland. Appl. Soil Ecol.132, 74–82 (2018).

    Google Scholar 

  • 316.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP106131 (2018).

  • 317.

    Gałązka, A. & Grządziel, J. Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of Maize using different cultivation techniques. Front. Microbiol.9, 76 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 318.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP107634 (2019).

  • 319.

    Ramirez, K. S. et al. Range-expansion effects on the belowground plant microbiome. Nat. Ecol. Evol.3, 604 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 320.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP107636 (2019).

  • 321.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP110188 (2019).

  • 322.

    George, P. B. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun.10, 1107 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 323.

    European Nucleotide Archive https://identifiers.org/ena.embl:ERP112007 (2019).

  • 324.

    Álvarez-Garrido, L., Viñegla, B., Hortal, S., Powell, J. R. & Carreira, J. A. Distributional shifts in ectomycorrizhal fungal communities lag behind climate-driven tree upward migration in a conifer forest-high elevation shrubland ecotone. Soil Biol. Biochem.137, 107545 (2019).

    Google Scholar 

  • 325.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA000926 (2014).

  • 326.

    Yamamoto, S. et al. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species. PLoS One9, e96363 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 327.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA000937 (2014).

  • 328.

    Kadowaki, K. et al. Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Popul. Ecol.56, 301–310 (2014).

    Google Scholar 

  • 329.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA001737 (2016).

  • 330.

    Izuno, A. et al. Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel next-generation sequencing analysis. Mycoscience57, 171–180 (2016).

    CAS  Google Scholar 

  • 331.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA002424 (2016).

  • 332.

    Matsuoka, S., Kawaguchi, E. & Osono, T. Temporal distance decay of similarity of ectomycorrhizal fungal community composition in a subtropical evergreen forest in Japan. FEMS Microbiol. Ecol.92, fiw061 (2016).

    PubMed  Google Scholar 

  • 333.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA002469 (2016).

  • 334.

    Izuno, A., Kanzaki, M., Artchawakom, T., Wachrinrat, C. & Isagi, Y. Vertical structure of phyllosphere fungal communities in a tropical forest in Thailand uncovered by high-throughput sequencing. PLoS One11, e0166669 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 335.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA003024 (2016).

  • 336.

    Matsuoka, S., Mori, A. S., Kawaguchi, E., Hobara, S. & Osono, T. Disentangling the relative importance of host tree community, abiotic environment and spatial factors on ectomycorrhizal fungal assemblages along an elevation gradient. FEMS Microbiol. Ecol.92, fiw044 (2016).

    PubMed  Google Scholar 

  • 337.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA003730 (2016).

  • 338.

    Toju, H., Yamamoto, S., Tanabe, A. S., Hayakawa, T. & Ishii, H. S. Network modules and hubs in plant-root fungal biomes. J. R. Soc. Interface13, 20151097 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 339.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA004913 (2017).

  • 340.

    Shen, Z. et al. Banana Fusarium Wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microb. Ecol.75, 739–750 (2017).

    PubMed  Google Scholar 

  • 341.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRA006519 (2018).

  • 342.

    Matsuoka, S., Ogisu, Y., Sakoh, S., Hobara, S. & Osono, T. Taxonomic, functional, and phylogenetic diversity of fungi along primary successional and elevational gradients near Mount Robson, British Columbia. Polar Sci.21, 165–171 (2018).

    ADS  Google Scholar 

  • 343.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRP002783 (2015).

  • 344.

    Fukasawa, Y. & Matsuoka, S. Communities of wood-inhabiting fungi in dead pine logs along a geographical gradient in Japan. Fungal Ecol.18, 75–82 (2015).

    Google Scholar 

  • 345.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRP003138 (2016).

  • 346.

    Toju, H., Tanabe, A. S. & Ishii, H. S. Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol. Ecol.25, 3242–3257 (2016).

    CAS  PubMed  Google Scholar 

  • 347.

    DNA Data Bank of Japan https://identifiers.org/ncbi/insdc.sra:DRP005365 (2019).

  • 348.

    Shigyo, N., Umeki, K. & Hirao, T. Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front. Microbiol.10, 1944 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 349.

    Semenova, T. A. et al. Data from: Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra. Dryad https://doi.org/10.5061/dryad.2fc32 (2014).

  • 350.

    Geml, J. et al. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol. Ecol.91, fiv095 (2015).

    PubMed  Google Scholar 

  • 351.

    Oriol, G. et al. Data from: Abrupt changes in the composition and function of fungal communities along an environmental gradient in the High. Arctic. Dryad https://doi.org/10.5061/dryad.n82g9 (2017).

  • 352.

    Grau, O. et al. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol. Ecol.26, 4798–4810 (2017).

    PubMed  Google Scholar 

  • 353.

    Mundra, S. et al. Data from: Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the above-ground vegetation. Dryad https://doi.org/10.5061/dryad.2343k (2015).

  • 354.

    Mundra, S. et al. Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation. New Phytol.205, 1587–1597 (2015).

    CAS  PubMed  Google Scholar 

  • 355.

    Rime, T. et al. Data from: Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Dryad https://doi.org/10.5061/dryad.gp302 (2014).

  • 356.

    Rime, T. et al. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol. Ecol.24, 1091–1108 (2015).

    CAS  PubMed  Google Scholar 

  • 357.

    Semenova, T. A. et al. Data from: Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth. Dryad https://doi.org/10.5061/dryad.cq2rb (2017).

  • 358.

    Semenova, T. A. et al. Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth. Soil Biol. Biochem.100, 201–209 (2016).

    CAS  Google Scholar 

  • 359.

    Geml, J. et al. Data from: Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Dryad https://doi.org/10.5061/dryad.8fn8j (2014).

  • 360.

    Wicaksono, C. Y. et al. Contracting montane cloud forests: a case study of the Andean alder (Alnusacuminata) and associated fungi in the Yungas. Biotropica49, 141–152 (2017).

    Google Scholar 

  • 361.

    Yao, F. et al. Data from: Substantial compositional turnover of fungal communities in an alpine ridge-to-snowbed gradient. Dryad https://doi.org/10.5061/dryad.216tp (2013).

  • 362.

    Yao, F. et al. Substantial compositional turnover of fungal communities in an alpine ridge-to-snowbed gradient. Mol. Ecol.22, 5040–5052 (2013).

    CAS  PubMed  Google Scholar 

  • 363.

    Schappe, T. et al. Uncultured fungus internal transcribed spacer 1, targeted locus study. GenBank https://identifiers.org/ncbi/insdc:KAYV00000000.1 (2017).

  • 364.

    Schappe, T. et al. The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. J. Ecol.105, 569–579 (2017).

    Google Scholar 

  • 365.

    Schappe, T. et al. Uncultured fungus internal transcribed spacer 1, targeted locus study. GenBank https://identifiers.org/ncbi/insdc:KAYU00000000.1 (2017).

  • 366.

    Schappe, T. et al. Uncultured fungus internal transcribed spacer 1, targeted locus study. GenBank https://identifiers.org/ncbi/insdc:KAYT00000000.1 (2017).

  • 367.

    Vaz, A. B. et al. MIMS Environmental/Metagenome sample from biofilm metagenome. BioSample https://identifiers.org/biosample:SAMN02934078 (2017).

  • 368.

    Vaz, A. B. et al. Using Next-Generation Sequencing (NGS) to uncover diversity of wood-decaying fungi in neotropical atlantic forests. Phytotaxa295, 1–21 (2017).

    Google Scholar 

  • 369.

    Vaz, A. B. et al. MIMS Environmental/Metagenome sample from biofilm metagenome. BioSample https://identifiers.org/biosample:SAMN02934079 (2017).

  • 370.

    Siciliano, S. et al. Polar soil bacterial and fungal biodiversity survey. Australian Antarctic Data Centre https://doi.org/10.4225/15/526f42ada05b1 (2014).

  • 371.

    Ji, M. et al. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Polar Biol.39, 237–249 (2016).

    Google Scholar 

  • 372.

    Hartmann, M. et al. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J.6, 2199–2218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 373.

    Rime, T., Hartmann, M. & Frey, B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J.10, 1625–1641 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals