in

Groundwater as a major source of dissolved organic matter to Arctic coastal waters

  • 1.

    Moore, W. S. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2, 59–88 (2010).

  • 2.

    Lecher, A. L. Groundwater discharge in the Arctic: a review of studies and implications for biogeochemistry. Hydrology 4, 41–57 (2017).

    • Article
    • Google Scholar
  • 3.

    Romanovsky, V. E. & Osterkamp, T. E. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr. Periglac. Process. 11, 219–239 (2000).

    • Article
    • Google Scholar
  • 4.

    Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).

  • 5.

    Jorgenson, T. et al. “Permafrost Characteristics of Alaska.” In Proceedings of the Ninth International Conference on Permafrost, extended abstracts. June 29–July 3, 2008 (eds. Kane, D. L. & Hinkel, K. M.) 121–122 (Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 2008).

  • 6.

    Kane, D. L., Yoshikawa, K. & McNamara, J. P. Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeol. J. 21, 41–52 (2013).

  • 7.

    Kling, G. W. Land-water interactions: the influence of terrestrial diversity on aquatic ecosystems. In Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Ecological Studies (Analysis and Synthesis) (eds. Chapin F. S. & Körner C.) 113 (Springer, Berlin, Heidelberg, 1995).

  • 8.

    Neilson, B. T. et al. Groundwater flow and exchange across the land surface explain carbon export patterns in continuous permafrost watersheds. Geophys. Res. Lett. 45, 7596–7605 (2018).

  • 9.

    Judd, K. E. & Kling, G. W. Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow. Biogeochemistry 60, 213–234 (2002).

  • 10.

    Guo, L. & Macdonald, R. W. Sources and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Glob. Biogeochem. Cycles 20, GB2011 (2006).

  • 11.

    Spencer, R. G. M., Aiken, G. R., Wickland, K. P., Striegl, R. G. & Hernes, P. J. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob. Biogeochem. Cycles 22, GB4002 (2008).

  • 12.

    Khosh, M. S. et al. Seasonality of dissolved nitrogen from spring melt to fall freezeup in Alaskan Arctic tundra and mountain streams. J. Geophys. Res. 122, 1718–1737 (2017).

  • 13.

    MacLean, R., Oswood, M. W., Irons, J. G. & Mcdowell, W. H. The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan (U. S. A.) taiga. Biogeochemistry 47, 239–267 (1999).

  • 14.

    Petrone, K. C., Jones, J. B., Hinzman, L. D. & Boone, R. D. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J. Geophys. Res. 111, G02020 (2006).

  • 15.

    Lyon, S. W. & Destouni, G. Changes in catchment scale recession flow properties in response to permafrost thawing in the Yukon River Basin. Int. J. Climatol. 30, 2138–2145 (2010).

    • Article
    • Google Scholar
  • 16.

    O’Donnell, J. A., Aiken, G. R., Walvoord, M. A. & Butler, K. D. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge. Glob. Biogeochem. Cycles 26, GB0E06 (2012).

    • Google Scholar
  • 17.

    Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, L21413 (2005).

  • 18.

    Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I. & Lammers, R. B. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res. 112, G04S47 (2007).

  • 19.

    St. Jacques, J. M. & Sauchyn, D. J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 36, L01401 (2009).

  • 20.

    Walvoord, M. A., Voss, C. I. & Wellman, T. P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour. Res. 48, W07524 (2012).

  • 21.

    Frey, K. E. & McClelland, J. W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 23, 169–182 (2009).

  • 22.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

  • 23.

    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013).

  • 24.

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

  • 25.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

  • 26.

    Dimova, N. T. & Burnett, W. C. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnol. Oceanogr. 56, 486–494 (2011).

  • 27.

    Dimova, N. T., Burnett, W. C., Chanton, J. P. & Corbett, J. E. Application of radon-222 to investigate groundwater discharge into small shallow lakes. J. Hydrol. 486, 112–122 (2013).

  • 28.

    Dimova, N. et al. Current magnitude and mechanisms of groundwater discharge in the Arctic: a case study from Alaska. Environ. Sci. Technol. 49, 12036–12043 (2015).

  • 29.

    Michaelson, G., Ping, C. & Kimble, J. Carbon storage and distribution in Tundra soils of Arctic Alaska, U.S.A. Arct. Alp. Res. 28, 414–424 (1996).

    • Article
    • Google Scholar
  • 30.

    Wickland, K. P., Neff, J. C. & Aiken, G. R. Dissolved Organic Carbon in Alaskan Boreal Forest: Sources, Chemical Characteristics, and Biodegradability. Ecosystems 10, 1323–1340 (2007).

  • 31.

    Shaver, G. R. et al. Terrestrial Ecosystems at Toolik Lake, Alaska. In Alaska’s Changing Arctic: Ecological Consequences for Tundra, Streams, and Lakes (eds. Hobbie, J. E. & Kling, G. W.) 90–142 (Oxford University Press, New York, 2014).

  • 32.

    Barnes, R. T., Butman, D. E., Wilson, H. F. & Raymond, P. A. Riverine export of aged carbon driven by flow path depth and residence time. Environ. Sci. Technol. 52, 1028–1035 (2018).

  • 33.

    Gersper, P. L., Alexander, V., Barkley, S. A., Barsdate, R. J. & Flint, P. S. An Arctic ecosystem: The Coastal Tundra at Barrow, Alaska, (eds. Brown, J., Miller, P. C., Tieszan, L. L. & Bunnell, F. L.) (Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, 1980).

  • 34.

    Mack, M. C., Schuur, E. A. G., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).

  • 35.

    Guo, L., Ping, C. L. & Macdonald, R. W. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys. Res. Lett. 34, 1–5 (2007).

  • 36.

    Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740 (2015).

  • 37.

    Vonk, J. E. et al. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environ. Res. Lett. 8, 035023 (2013).

  • 38.

    Fritz, M. et al. Dissolved organic carbon (DOC) in Arctic ground ice. Cryosphere 9, 737–752 (2015).

  • 39.

    Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B. & Balser, A. W. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J. Geophys. Res. Biogeosci. 119, 2049–2063 (2014).

  • 40.

    Dou, F., Ping, C., Guo, L. & Jorgenson, T. Estimating the impact of seawater on the production of soil water-extractable organic carbon during coastal erosion. J. Environ. Qual. 37, 2368–2374 (2008).

  • 41.

    Schur, Y., Hinkel, K. H. & Nelson, F. E. The transient layer: implications for geocryology and climate-change science. Permafr. Periglac. Process. 16, 5–17 (2005).

    • Article
    • Google Scholar
  • 42.

    Wales, N. A. et al. Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons. Hydrol. Earth Syst. Sci. Discuss. 1–27 https://www.hydrol-earth-syst-sci-discuss.net/hess-2019-25/ (2019).

  • 43.

    Connolly, C. T. et al. Watershed slope as a predictor of fluvial dissolved organic matter and nitrate concentrations across geographical space and catchment size in the Arctic. Environ. Res. Lett. 13, 104015 (2018).

  • 44.

    McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Preprint at EarthArXiv (2018).

  • 45.

    Burnett, W., Bokuniewicz, H., Huettel, M., Moore, W. & Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3–33 (2003).

  • 46.

    Li, L., Barry, D. A., Stagnitti, F. & Parlange, J. Y. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 35, 3253–3259 (1999).

  • 47.

    Kim, G., Lee, K. K., Park, K. S., Hwang, D. W. & Yang, H. S. Large submarine groundwater discharge (SGD) from a volcanic island. Geophys. Res. Lett. 30, 2098 (2003).

  • 48.

    Taniguchi, M., Ishitobi, T. & Shimada, J. Dynamics of submarine groundwater discharge and freshwater-seawater interface. J. Geophys. Res. 111, C01008 (2006).

  • 49.

    Kaleris, V. Submarine groundwater discharge: effects of hydrogeology and of near shore surface water bodies. J. Hydrol. 325, 96–117 (2006).

  • 50.

    Kwon, E. Y. et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys. Res. Lett. 41, 8438–8444 (2014).

  • 51.

    Harris, C. M., McTigue, N. D., McClelland, J. W. & Dunton, K. H. Do high Arctic coastal food webs rely on a terrestrial carbon subsidy? Food Webs 15, e0081 (2018).

    • Article
    • Google Scholar
  • 52.

    Rawlins, M. A., Cai, L., Stuefer, S. L. & Nicolsky, D. Changing characteristics of runoff and freshwater export from watersheds draining Northern Alaska. Cryosphere Discuss. 13, 3337–3352 (2019).

  • 53.

    Beaupré, S. R., Druffel, E. R. M. & Griffin, S. A low-blank photochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon. Oceanogr. Methods 5, 174–184 (2007).

    • Article
    • Google Scholar
  • 54.

    Xu, X. et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nucl. Instrum. Methods Phys. Res. Sect. B 259, 320–329 (2007).

  • 55.

    Stuiver, M. & Polach, H. A. Discussion Reporting of 14C data. Radiocarbon 19, 355–363 (1997).

    • Article
    • Google Scholar
  • 56.

    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater, Limnology and Oceanography. Methods 6, 230–235 (2008).

    • CAS
    • Google Scholar

  • Source: Ecology - nature.com

    Staring into the vortex

    Marine virus predation by non-host organisms